People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Dokkum, Pieter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
A New Census of the 0.2 < z < 3.0 Universe. II. The Star-forming Sequence
Abstract
We use the panchromatic spectral energy distribution (SED)-fitting code Prospector to measure the galaxy logM*-logSFR relationship (the star-forming sequence) across 0.2 < z < 3.0 using the COSMOS-2015 and 3D-HST UV-IR photometric catalogs. We demonstrate that the chosen method of identifying star-forming galaxies introduces a systematic uncertainty in the inferred normalization and width of the star-forming sequence, peaking for massive galaxies at ~0.5 and ~0.2 dex, respectively. To avoid this systematic, we instead parameterize the density of the full galaxy population in the logM*-logSFR-redshift plane using a flexible neural network known as a normalizing flow. The resulting star-forming sequence has a low-mass slope near unity and a much flatter slope at higher masses, with a normalization 0.2-0.5 dex lower than typical inferences in the literature. We show this difference is due to the sophistication of the Prospector stellar populations modeling: the nonparametric star formation histories naturally produce higher masses while the combination of individualized metallicity, dust, and star formation history constraints produce lower star formation rates (SFRs) than typical UV+IR formulae. We introduce a simple formalism to understand the difference between SFRs inferred from SED fitting and standard template-based approaches such as UV+IR SFRs. Finally, we demonstrate the inferred star-forming sequence is consistent with predictions from theoretical models of galaxy formation, resolving a long-standing ~ 0.2-0.5 dex offset with observations at 0.5 < z < 3. The fully trained normalizing flow including a nonparametric description of $ ({log}{M}^{* },{logSFR},z)$ is available online <SUP>20</SUP> <SUP>20</SUP> https://github.com/jrleja/sfs_leja_trained_flow to facilitate straightforward comparisons with future work....