Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Calzetti, D.

  • Google
  • 3
  • 43
  • 218

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: The KINGFISH Sample84citations
  • 2010Constraining Stellar Feedbacks: Photo-ionization vs. Shock-ionization in Local Starburst Galaxiescitations
  • 2001FUSE Observations of Outflowing O VI in the Dwarf Starburst Galaxy NGC 1705134citations

Places of action

Chart of shared publication
Kennicutt, R. C.
2 / 4 shared
Dopita, M. A.
1 / 1 shared
Pellerin, A.
1 / 1 shared
Gallagher, J. S.
1 / 1 shared
Chandar, R.
1 / 1 shared
Hong, Sungryong
1 / 1 shared
Martin, C.
1 / 11 shared
Martin, C. L.
1 / 26 shared
Heckman, T. M.
1 / 1 shared
Sembach, K. R.
1 / 1 shared
Leitherer, C.
1 / 3 shared
Strickland, D. K.
1 / 1 shared
Chart of publication period
2020
2010
2001

Co-Authors (by relevance)

  • Kennicutt, R. C.
  • Dopita, M. A.
  • Pellerin, A.
  • Gallagher, J. S.
  • Chandar, R.
  • Hong, Sungryong
  • Martin, C.
  • Martin, C. L.
  • Heckman, T. M.
  • Sembach, K. R.
  • Leitherer, C.
  • Strickland, D. K.
OrganizationsLocationPeople

article

Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: The KINGFISH Sample

  • Gordon, K. D.
  • Kennicutt, R. C.
  • Aniano, G.
  • Crocker, A.
  • Calzetti, D.
  • Koda, J.
  • Boquien, M.
  • Montiel, E.
  • Bolatto, A. D.
  • Leroy, A. K.
  • Schinnerer, E.
  • Donovan Meyer, J.
  • Hunt, L. K.
  • Sauvage, M.
  • Dale, Daniel A.
  • Wolfire, M. G.
  • Walter, F.
  • Miller, A.
  • Engelbracht, C. W.
  • Relaño, M.
  • Galametz, M.
  • Hinz, J.
  • Draine, B. T.
  • Sandstrom, K.
  • Armus, L.
  • Murphy, E. J.
  • De Looze, I.
  • Rix, H. -W.
  • Skibba, R.
  • Helou, G.
  • Smith, J. -D. T.
  • Johnson, B. D.
  • Roussel, H.
Abstract

Interstellar dust and starlight are modeled for the galaxies of the project "Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel." The galaxies were observed by the Infrared Array Camera and the Multiband Imaging Photometer for Spitzer on Spitzer Space Telescope, and the Photodetector Array Camera and Spectrometer and the Spectral and Photometric Imaging Receiver on Herschel Space Observatory. With data from 3.6 to 500 μm, dust models are strongly constrained. Using a physical dust model, for each pixel in each galaxy we estimate (1) dust surface density, (2) dust mass fraction in polycyclic aromatic hydrocarbons (PAHs), (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in subregions with high starlight intensity. The dust models successfully reproduce the observed global and resolved spectral energy distributions. With the angular resolution of Herschel, we obtain well-resolved maps (available online) for the dust properties. As in previous studies, we find the PAH fraction ${q}_{{PAH}}$ to be an increasing function of metallicity, with a threshold oxygen abundance Z/Z<SUB>☉</SUB> ≈ 0.1, but we find the data to be fitted best with ${q}_{{PAH}}$ increasing linearly with ${log}({{O}}/{{H}})$ above a threshold value of 0.15(O/H)<SUB>☉</SUB>. We obtain total dust masses for each galaxy by summing the dust mass over the individual map pixels; these "resolved" dust masses are consistent with the masses inferred from a model fit to the global photometry. The global dust-to-gas ratios obtained from this study are found to correlate with galaxy metallicities. Systems with Z/Z<SUB>☉</SUB> ≳ 0.5 have most of their refractory elements locked up in dust, whereas in systems with Z/Z<SUB>☉</SUB> ≲ 0.3 most of these elements tend to remain in the gas phase. Within galaxies, we find that ${q}_{{PAH}}$ is suppressed in regions with unusually warm dust with $ {L}_(70\{{m}}) 0.4{L}_{{dust}}$ . With knowledge of one long-wavelength flux density ratio (e.g., f<SUB>160</SUB>/f<SUB>500</SUB>), the minimum starlight intensity heating the dust ( ${U}_$ ) can be estimated to within ∼50%, despite a variation in ${U}_$ of more than two orders of magnitude. For the adopted dust model, dust masses can be estimated to within ∼0.2 dex accuracy using the f<SUB>160</SUB>/f<SUB>500</SUB> flux ratio and the integrated dust luminosity, and to ∼0.07 dex accuracy using the 500 μm luminosity $ {L}_(500\, {{m}})$ alone. There are additional systematic errors arising from the choice of dust model, but these are hard to estimate. These calibrated prescriptions for estimating starlight heating intensity and dust mass may be useful for studies of high-redshift galaxies....

Topics
  • density
  • impedance spectroscopy
  • surface
  • Oxygen
  • refractory
  • gas phase