Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pundienė, Ina

  • Google
  • 8
  • 19
  • 78

Vilnius Gediminas Technical University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023The Effect of Mechanical Activation of Fly Ash on Cement-Based Materials Hydration and Hardened State Properties19citations
  • 2023Effect of Mechanically Activated Nepheline-Syenite Additive on the Physical–Mechanical Properties and Frost Resistance of Ceramic Materials Composed of Illite Clay and Mineral Wool Waste5citations
  • 2022Study of the Course of Cement Hydration in the Presence of Waste Metal Particles and Pozzolanic Additives1citations
  • 2018Long-term curing impact on properties, mineral composition and microstructure of hemp shive-cement compositecitations
  • 2018The effect of multi-walled carbon nanotubes on the rheological properties and hydration process of cement pastescitations
  • 2014Investigation of Hydration Features of the Special Concrete with Aggregates of Various Metal Particles2citations
  • 2011Investigation of peculiarities in the hardening process of portland cements with active additives out of wastecitations
  • 2010A REVIEW OF THE POSSIBLE APPLICATIONS OF NANOTECHNOLOGY IN REFRACTORY CONCRETE51citations

Places of action

Chart of shared publication
Berdikul, Nazerke
1 / 1 shared
Akmalaiuly, Kenzhebek
1 / 1 shared
Pranckevičienė, Jolanta
4 / 5 shared
Girskas, Giedrius
2 / 12 shared
Kligys, Modestas
2 / 5 shared
Kairytė, Agnė
2 / 9 shared
Žvironaitė, Jadvyga
2 / 2 shared
Gargasas, Justinas
1 / 7 shared
Balčiūnas, Giedrius
1 / 3 shared
Boris, Renata
1 / 12 shared
Leonavičius, Dainius
1 / 1 shared
Mironov, Viktor
1 / 1 shared
Spudulis, Edmundas
1 / 3 shared
Korjakins, Aleksandrs
1 / 7 shared
Antonovič, Valentin
2 / 5 shared
Balkevičius, Valdas
1 / 2 shared
Stonys, Rimvydas
1 / 4 shared
Čėsnienė, Jūratė
1 / 2 shared
Kerienė, Jadvyga
1 / 2 shared
Chart of publication period
2023
2022
2018
2014
2011
2010

Co-Authors (by relevance)

  • Berdikul, Nazerke
  • Akmalaiuly, Kenzhebek
  • Pranckevičienė, Jolanta
  • Girskas, Giedrius
  • Kligys, Modestas
  • Kairytė, Agnė
  • Žvironaitė, Jadvyga
  • Gargasas, Justinas
  • Balčiūnas, Giedrius
  • Boris, Renata
  • Leonavičius, Dainius
  • Mironov, Viktor
  • Spudulis, Edmundas
  • Korjakins, Aleksandrs
  • Antonovič, Valentin
  • Balkevičius, Valdas
  • Stonys, Rimvydas
  • Čėsnienė, Jūratė
  • Kerienė, Jadvyga
OrganizationsLocationPeople

article

A REVIEW OF THE POSSIBLE APPLICATIONS OF NANOTECHNOLOGY IN REFRACTORY CONCRETE

  • Stonys, Rimvydas
  • Čėsnienė, Jūratė
  • Antonovič, Valentin
  • Pundienė, Ina
  • Kerienė, Jadvyga
Abstract

<jats:p>This article reviews the manufacturing nanotechnologies of modern refractory concretes and some other cementitious materials. The main part of the article focuses on the results obtained by the authors who analyzed the application of nanotechnology for manufacturing refractory concretes and examined the influence of nanostructure formation in the binding material on the properties of refractory concretes. In one case, investigations were carried out using two‐component (sodium silicate solution mixed with dicalcium silicate) and three‐component (sodium silicate solution mixed with dicalcium silicate plus calcium aluminate cement) binding materials, whereas in other case, multi‐component material, middle cement refractory concrete with mullite aggregates, microsilica and additives of single and hybrid deflocculant (polycarboxylate ether Castament FS20 and sodium tripolyphosphate) were researched. Preliminary investigations showed that the three‐component binding material under development hardens unlike the two‐component material as one of the binding components (combination of sodium silicate solution and dicalcium silicate) hardens very fast and affects the hydration process of the other component, calcium aluminate cement, which has a powerful impact on the whole structure of the already hardened material. The limited amount of water in the hardening structure provides conditions for the formation of the initial nanoclusters and nanolayers of amorphous hydrates. The application of nanotechnology in manufacturing refractory concretes has enabled to increase compressive strength 3 times – from 55 MPa to 165 MPa. Santrauka Straipsnyje apžvelgiamos per pastaraji dešimtmeti sukurtos ugniai atspariu betonu ir kai kuriu kitu cementiniu medžiagu gamybos nanotechnologijos, kurios padeda nagrineti nanostruktūru, susidariusiu kietejant šiu betonu rišamajai medžiagai, itaka fizikinems betonu charakteristikoms. Detaliau apžvelgiami rezultatai, gauti šio straipsnio autoriu, nagrinejusiu nanotechnologiju taikyma ugniai atspariu betonu gamyboje tiriant nanostruktūru susidarymo, kietejant ugniai atspariu betonu rišamajai medžiagai bei ugniai atspariems betonams su mulito užpildu, itaka šiu medžiagu savybems. Autoriu tyrimai atlikti naudojant dvinkomponente (natrio silikato tirpalo ir dikalcio silikato) bei trikomponente (natrio silikato tirpalo, dikalcio silikato ir aliuminatinio cemento) rišamaja medžiaga bei vidutinio cemento kiekio ugniai atsparu betona su SiO2 mikrodulkiu ir hibridinio deflokulianto (natrio tripolifosfatu ir polikarboksilato eteriu) priedu. Preliminarūs tyrimai parode, kad trikomponentis rišiklis kieteja kitaip nei dvikomponentis, nes viena iš rišamuju daliu (natrio silikato tirpalo ir dikalcio silikato kompozicija) kieteja labai greitai ir veikia kito komponento (aliuminatinio cemento) hidratacijos eiga, o tai turi didele itaka visai kietejančiai struktūrai. Ribotas vandens kiekis kietejančioje struktūroje padeda šalia amorfiniu hidratu formuotis nanoklasteriams ir nanosluoksniams. Pritaikius nanotechnologija ugniai atspariu betonu gamyboje, pavyko gerokai padidinti ju termini atsparuma (beveik tris kartus) ir gniuždomaji stipri (nuo 55 MPa iki 165 MPa).</jats:p>

Topics
  • amorphous
  • strength
  • Sodium
  • cement
  • Calcium
  • refractory
  • mullite