People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rautkari, Lauri
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Improving mechanical performance and functionality of birch veneer with mechano-enzymatic microfibrillated cellulose coatingcitations
- 2023Evaluating the quality of surface carbonized woods modified with a contact charring or a gas flame charring techniquecitations
- 2022Decay Resistance of Surface Carbonized Woodcitations
- 2022Effect of Moisture on Polymer Deconstruction in HCl Gas Hydrolysis of Woodcitations
- 2022Moisture Sorption of Wood Surfaces Modified by One-Sided Carbonization as an Alternative to Traditional Façade Coatingscitations
- 2021Bioinspired living coating system in service: evaluation of the wood protected with biofinish during one-year natural weatheringcitations
- 2021Deswelling of microfibril bundles in drying wood studied by small-angle neutron scattering and molecular dynamicscitations
- 2021Water-accessibility of interfibrillar spaces in spruce wood cell wallscitations
- 2021Thermal modification of wood—a review: chemical changes and hygroscopicitycitations
- 2020Observing microfibril bundles in wood by small-angle neutron scattering
- 2020The effect of compression and incision on wood veneer and plywood physical and mechanical propertiescitations
- 2020Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scatteringcitations
- 2020Effect of weathering on surface functional groups of charred norway spruce cladding panelscitations
- 2020Moisture-related changes in the nanostructure of woods studied with X-ray and neutron scatteringcitations
- 2020Resistance of thermally modified and pressurized hot water extracted Scots pine sapwood against decay by the brown-rot fungus Rhodonia placentacitations
- 2019Small-angle scattering model for efficient characterization of wood nanostructure and moisture behaviourcitations
- 2018The effect of de- and re-polymerization during heat-treatment on the mechanical behavior of Scots pine sapwood under quasi-static loadcitations
- 2018Sorption-related characteristics of surface charred spruce woodcitations
- 2018Influence of water and humidity on wood modification with lactic acidcitations
- 2018Thermal Isomerization of Hydroxyazobenzenes as a Platform for Vapor Sensingcitations
- 2018Thermal Isomerization of Hydroxyazobenzenes as a Platform for Vapor Sensingcitations
- 2017THE INFLUENCE OF THERMAL MODIFICATION ON VENEER BOND STRENGTH
- 2017Surface activation of wood by corona treatment and NaOH soaking for improved bond performance in plywoodcitations
- 2017Influence of temperature of thermal treatment on surface densification of sprucecitations
- 2017Pre-treatment with sodium silicate, sodium hydroxide, ionic liquids or methacrylate resin to reduce the set-recovery and increase the hardness of surface-densified scots pinecitations
- 2016Cladding boards in wooden facades
- 2015Influence of Welding Time on Tensile-Shear Strength of Linear Friction Welded Birch (Betula pendula L.) Woodcitations
- 2015High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solutioncitations
- 2014Internal vapour pressure of plywood during hot pressing process (STSM funded by COST Action FP1006)
Places of action
Organizations | Location | People |
---|
article
Pre-treatment with sodium silicate, sodium hydroxide, ionic liquids or methacrylate resin to reduce the set-recovery and increase the hardness of surface-densified scots pine
Abstract
<p>The hardness of the outer regions of solid wood can be improved by surface densification, and this opens up new fields of application for low-density species. So far, surface densification relies on time- and energy-consuming batch processes, and this means that the potential advantages over more expensive hardwood species or non-renewable materials are reduced. Using fossil-based plastics or applying wood densification processes with a high energy consumption has adverse effects on the environment. In a previous study, it was shown that the surface of wood can be densified by a continuous high-speed process, adopting a roller pressing approach. The desired density profiles could be obtained at process speeds of up to 80 m min-1, but an equally simple and fast method to eliminate the moisture-induced set-recovery of the densified wood cells is still required. For this reason, the goal of the present study was to evaluate the effect on the set-recovery and hardness of surface-densified Scots pine after a fast pre-treatment with solutions of sodium silicate, sodium hydroxide, methacrylate resin, and ionic liquids. The Scots pine specimens were pre-treated by applying the chemical treatment and impregnation agents to the wood surface with a paper towel, before the specimens were densified. For each type of treatment, 15 specimens were densified in a hot press. The set-recovery was measured after two wet-dry cycles, and 30 Brinell hardness measurements were carried out on each group of specimens. In general, the effect of the treatments on the set-recovery was rather low. Ionic liquid solutions appear to work as a strong plasticiser and the treatment led to a reduction in set-recovery by 25%. The treatments with sodium silicate, ionic liquids and methacrylate resin led to a greater hardness than in untreated and densified specimens. Further experiments are needed to improve the depth of penetration of the treatment solutions into the wood surface, as this was identified as one of the main causes of the rather weak effects.</p>