People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jensen, Jørgen Arendt
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022A Hand-Held 190+190 Row–Column Addressed CMUT Probe for Volumetric Imagingcitations
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 2020Real Time Synthetic Aperture and Plane Wave Ultrasound Imaging with the Xilinx VERSAL™ SIMD-VLIW Architecturecitations
- 2019Imaging Performance for Two Row–Column Arrayscitations
- 2019188+188 Row–Column Addressed CMUT Transducer for Super Resolution Imagingcitations
- 2019CMUT Electrode Resistance Design: Modelling and Experimental Verification by a Row-Column Arraycitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2018Probe development of CMUT and PZT row-column-addressed 2-D arrayscitations
- 2018Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lenscitations
- 2018Design of a novel zig-zag 192+192 Row Column Addressed Array Transducer: A simulation study.citations
- 2017Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners
- 2017Real-time Implementation of Synthetic Aperture Vector Flow Imaging on a Consumer-level Tabletcitations
- 2017Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensionscitations
- 20163-D Vector Flow Using a Row-Column Addressed CMUT Arraycitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodization:Part II: Transducer Fabrication and Experimental Resultscitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodizationcitations
- 2012Multilayer piezoelectric transducer models combined with Field IIcitations
- 2011Performance Evaluation of a Synthetic Aperture Real-Time Ultrasound System
- 2010Simulation of High Quality Ultrasound Imaging
- 2009Parameter sensitivity study of a Field II multilayer transducer model on a convex transducercitations
- 2007Medical ultrasound imagingcitations
- 2004Preliminary In-Vivo Evaluation of Convex Array Synthetic Aperture Imagingcitations
- 2003Delay generation methods with reduced memory requirementscitations
Places of action
Organizations | Location | People |
---|
article
Multilayer piezoelectric transducer models combined with Field II
Abstract
One-dimensional and three-dimensional axisymmetric transducer model have been compared to determine their feasibility to predict the volt-to-surface impulse response of a circular Pz27 piezoceramic disc. The ceramic is assumed mounted with silver electrodes, bounded at the outer circular boundary with a polymer ring, and submerged into water. The transducer models are developed to account for any external electrical loading impedance in the driving circuit. The models are adapted to calculate the surface acceleration needed by the Field II software in predicting pressure pulses at any location in front of the transducer. Results show that both models predict the longitudinal resonances with consistency. The one-dimensional model is found to exhibit approximately 2.9 dB peak overshoot at the lowest longitudinal resonance frequencies prediction. These values are decreasing for higher longitudinal modes. If the three-dimensional model is restricted in its radial movement at the circular boundary both models exhibit identical results. The Field II predicted pressure pulses are found to have oscillating consistency with a 2.0 dB overshoot on the maximum amplitude using the one-dimensional compared to the three-dimensional model. This is with no electronic loading. With a 50 Ω loading an amplitude overshoot is found to be 1.5 dB.