Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kaur, Aman

  • Google
  • 3
  • 12
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Climbing robot to perform radiography of wind blades citations
  • 2021Development of a robot for in-service radiography inspection of subsea flexible risers8citations
  • 2018RiserSure: Automated Deployment of Digital Radiography for Subsea Inspection of Flexible Risers5citations

Places of action

Chart of shared publication
Garrido, G. G.
1 / 1 shared
Anvo, R. N.
1 / 1 shared
Sattar, Tariq
3 / 4 shared
Markham, K.
1 / 1 shared
Marques, V.
1 / 3 shared
Routledge, P.
1 / 1 shared
Richard, A.
1 / 2 shared
Tokhi, Mohammad Osman
1 / 2 shared
Corsar, M.
1 / 1 shared
Clarke, A.
1 / 9 shared
Nicholson, Ip
1 / 1 shared
Ma, B.
1 / 6 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Garrido, G. G.
  • Anvo, R. N.
  • Sattar, Tariq
  • Markham, K.
  • Marques, V.
  • Routledge, P.
  • Richard, A.
  • Tokhi, Mohammad Osman
  • Corsar, M.
  • Clarke, A.
  • Nicholson, Ip
  • Ma, B.
OrganizationsLocationPeople

article

Development of a robot for in-service radiography inspection of subsea flexible risers

  • Kaur, Aman
  • Richard, A.
  • Sattar, Tariq
  • Tokhi, Mohammad Osman
Abstract

The extreme operational environmental conditions and aging conditions of subsea structures pose a risk to their structural integrity and is critical to their safety. Non-destructive testing is essential to identify defects developing within the structure, allowing repair in a timely manner to mitigate against failures that cause damage to the environment and pose a hazard to human operators. However, in order to be cost effective, inspections must be carried out without taking the risers out of service. This poses significant safety risks if undertaken manually. This paper presents the development of an automated inspection system for flexible risers that are used to connect wellheads on the seafloor to the offshore production and storage facility. Due to the complex structure of risers, radiography is considered as the best technique to inspect multiple layers of the risers. However, radiography inspection in turn requires a robotic system for in-situ inspection with higher payload capacity, precise movement of source and detector which is able to withstand an extreme operational environment.The deployment of a radiography inspection system has been achieved by developing a customized subsea robotic system called RiserSure that can precisely provide the scanning motion of a gamma ray source and digital detector moving in alignment. The prototype has been tested on a flexible riser during shallow water sea trials with the system placed around a riser by a remotely operated vehicle. The results from the trials show that the internal inner and outer tensile armour layer and defects in the riser can be successfully imaged in real operational conditions.

Topics
  • impedance spectroscopy
  • defect
  • aging
  • aging