People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Memon, Saim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022A Comprehensive Review on Current Performance, Challenges and Progress in Thin-Film Solar Cellscitations
- 2021Experimental Modal Analysis of Distinguishing Microstructural Variations in Carbon Steel SA516 by Applied Heat Treatments, Natural Frequencies, and Damping Coefficientscitations
- 2020Advanced Thermoelectric Materials for Energy Harvesting Applicationscitations
- 2020Dye removal with magnetic graphene nanocomposite through micro reactorscitations
- 2020Manifestations of carbon capture-storage and ambivalence ofquantum-dot & organic solar cells: An indispensable abridgedreview
- 2019Smart Vacuum Glazing invented with Energy-Efficient Fusion Seal for the Solar Thermal Transmittance Control in Buildings
- 2018Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvestingcitations
- 2015A new low-temperature hermetic composite edge seal for the fabrication of triple vacuum glazingcitations
- 2013Energy efficient vacuum glazed window: A system design and investigations on hermetic sealing materials
- 2013Design and fabrication of vacuum glazing units using a new low temperature hermetic glass edge sealing method
- 2012Design & Development of Triple Vacuum glazing: An Investigation on Cost Effective Hermetic Sealing Materials & Predictions of Heat Load in a Solid Wall Dwelling
Places of action
Organizations | Location | People |
---|
article
Dye removal with magnetic graphene nanocomposite through micro reactors
Abstract
Contaminated waste water treatment and clean water scarcity are current challenges acutely in the Asian and African continents. This paper bestows applied co-precipitation technique for the fabrication of Magnetic Graphene Nano-Composites (MGNCs) for water treatment purposes. In this paper, characterization procedures were applied to delineate numerous physical and chemical properties of the synthetic MGNCs and mixing performance for several designed microreactors were determined using the Dushman’s method in comparison to two parallel reactions. The mixing timings for different microreactors at flow rates between 100 and 300 ml/hr were determined. MCNCs were utilised to remove an Acid Blue 25 dye as a pollutant from water at diverse types of microreactors. The comparison between the various microreactors’ performance and mixing time was accomplished. The maximum instantaneous removal capacity of graphene-based nanomaterial was recorded using K.M micro mixer about 68% for 10 ppm dye concentration.