Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nwokeji, T. I.

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Manifestations of carbon capture-storage and ambivalence ofquantum-dot & organic solar cells: An indispensable abridgedreviewcitations

Places of action

Chart of shared publication
Nemera, G. O.
1 / 1 shared
Memon, Saim
1 / 11 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Nemera, G. O.
  • Memon, Saim
OrganizationsLocationPeople

article

Manifestations of carbon capture-storage and ambivalence ofquantum-dot & organic solar cells: An indispensable abridgedreview

  • Nemera, G. O.
  • Memon, Saim
  • Nwokeji, T. I.
Abstract

This study bestows an essential abridged review of the manifestations of carbon capture & storage (CCS) systems and the ambivalence of quantum-dot & organic photovoltaic (PV) solar cells. This research implicates that CCS system is evolving in capturingemissions from coal-fired electrical power stations to further mitigate climate change. Different manifestations are discussed for capturing and storing thewith repercussions on operating costs, toxicity and energy efficiency. Chemical Looping Combustion appears to be the more energy efficient than Oxy-fuel CFBC and Ionic Liquids, and less expensive than Calcium Looping and Amine Scrubbing. Calcium Looping (Cal) and Ionic Liquids are also less toxic than Amine Scrubbing. Direct air technology is also very compelling at capturingemissions but highly expensive. Nevertheless, further research is still required for all CCS systems to be able to implement them widely in existing/new electrical power stations. Waste heat energy recovery systems can be used in conjunction withcapture systems for further reduction of emissions. The ambivalence of quantum dot and organic solar cells are briefly reviewed. It implicates that composite film with enhanced quantum dot effects will make the film highly transparent and options of tunability of its color spectrum make the quantum dot solar cells highly attractive to a wide variety of applications. Organic solar cells are carbon-rich polymers and can be designed to improve a precise function of the cell, such as sensitivity to a certain type of light. OPV cells can only be considered as half-competent to crystalline silicon and have smaller beneficial lifespans, but could be less costly to produce in high volumes. Current research issues are substitution/compromises between electrical power conversion efficiency and average visible light transmittance. However, improving average light-transmittance decreases electrical power conversion efficiency and vice versa.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • laser emission spectroscopy
  • composite
  • combustion
  • Silicon
  • Calcium
  • toxicity
  • amine
  • quantum dot
  • power conversion efficiency