Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jamaluddin, Nor Athira

  • Google
  • 4
  • 7
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021The performance of modified Jatropha-based nanofluid during turning process1citations
  • 2021Experimental analysis of tribological performance of modified Jatropha oil enriched with nanoparticle additives for machining applicationcitations
  • 2020Tribological Analyses of Modified Jatropha Oil with hBN and Graphene Nanoparticles as An Alternative Lubricant for Machining Process14citations
  • 2020Tribological Assessment of Modified Jatropha Oil with hBN and Graphene Nanoparticles as a New Preference for the Metalworking fluid10citations

Places of action

Chart of shared publication
Saleh, Aslinda
1 / 1 shared
Talib, Norfazillah
4 / 13 shared
Ahmad, Said
1 / 1 shared
Lee, W. K.
1 / 1 shared
Abdullah, Haslina
1 / 1 shared
Rao, N. R. S.
1 / 1 shared
Sani, Amiril Sahab Abdul
2 / 3 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Saleh, Aslinda
  • Talib, Norfazillah
  • Ahmad, Said
  • Lee, W. K.
  • Abdullah, Haslina
  • Rao, N. R. S.
  • Sani, Amiril Sahab Abdul
OrganizationsLocationPeople

article

Tribological Analyses of Modified Jatropha Oil with hBN and Graphene Nanoparticles as An Alternative Lubricant for Machining Process

  • Talib, Norfazillah
  • Jamaluddin, Nor Athira
Abstract

The increase of health and environmental consciousness has motivated the effort of technology improvement on lubrication by finding and exploring another potential alternative to replace mineral-based metalworking fluids. Due to this concern, vegetable-based oils have been recognised as an ideal lubricating base oil in machining due to low toxicity, biodegradable, and renewable energy sources. Moreover, nanofluids have attracted enormous attention in the field of lubrication due to excellent physical and chemical properties that can enhance tribological characterisation. The objective of the current work is to develop a new formulation of nanofluids in modified jatropha oil (MJO) by adding hexagonal boron nitride (hBN) and graphene nanoparticle additives at the lowest concentration (0.01, 0.025. and 0.05 wt. %). The physicochemical tests in terms of kinematic viscosity and viscosity index were conducted and compared with synthetic ester (SE). Tribology testing was conducted through four-ball test to determine the coefficient of friction, mean wear scar diameter, and friction torque. The result shows a significant improvement of MJO samples by adding nanoparticle additives compared to the SE. MJOg2 (MJO + 0.025 wt. % of graphene) exhibited excellent tribological behaviour by providing the lowest coefficient of friction and friction torque. Meanwhile, MJOh1 (MJO + 0.01 wt. % of hBN) provided with a smaller mean wear scar diameter among other lubricant samples. Conclusively, the addition of nanoparticle additives significantly enhanced the tribological characteristics and is highly suitable as a substitute for SE.

Topics
  • nanoparticle
  • impedance spectroscopy
  • mineral
  • nitride
  • Boron
  • toxicity
  • ester
  • coefficient of friction
  • kinematic viscosity