People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aslfattahi, N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar system
- 2022Improved thermo-physical properties and energy efficiency of hybrid PCM/graphene-silver nanocomposite in a hybrid CPV/thermal solar systemcitations
- 2021Optimization of thermophysical and rheological properties of mxene ionanofluids for hybrid solar photovoltaic/thermal systemscitations
- 2021ANN Modeling of Thermal Conductivity and Viscosity of MXene-Based Aqueous IoNanofluidcitations
- 2021Back propagation modeling of shear stress and viscosity of aqueous Ionic-MXene nanofluidscitations
- 2020Effect of al2o3 dispersion on enthalpy and thermal stability of ternary nitrate eutectic salt
- 2020Experimental assessment of a novel eutectic binary molten salt-based hexagonal boron nitride nanocomposite as a promising PCM with enhanced specific heat capacitycitations
- 2020Experimental assessment of a novel eutectic binary molten salt-based hexagonal boron nitride nanocomposite as a promising PCM with enhanced specific heat capacity
- 2019Experimental investigation of thermal stability and enthalpy of eutectic alkali metal solar salt dispersed with MGO nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Experimental assessment of a novel eutectic binary molten salt-based hexagonal boron nitride nanocomposite as a promising PCM with enhanced specific heat capacity
Abstract
In this study, novel nanocomposites containing the pre-defined mass ratio of binary molten salt (NaNO3-KNO3: 60-40 wt. %) dispersed with hexagonal boron nitride (hBN) nanoparticles with nominal size of 70 nm, were prepared through one-phase preparation method. Four different types of samples including pure binary molten salt and binary molten salt-based hBN nanocomposites with loading concentrations of 0.5, 1 and 1.5 wt. % were prepared. The proposed amount of sodium nitrate and potassium nitrate was added to certain amount of DI water, comprising with 0.5, 1 and 1.5 wt. % concentration of hBN nanoparticles. Scanning electronic microscopy (SEM) was conducted to evaluate the uniformity of the synthesized binary molten salt-based hBN nanocomposites. The SEM images revealed uniform dispersion of hexagonal boron nitride nanoparticles and fractal-like structures were observed clearly. Specific heat capacity (cp) and melting temperature measurements were performed using a differential scanning calorimetry (DSC). The experimental achieved data for melting temperature proved that hexagonal boron nitride nanoparticles do not affect the melting temperature of the synthesized nanocomposites. The experimentally achieved data for the average cp values of the binary molten salt in solid and liquid phases were 1.14 and 1.13 J/g K, respectively. While, the average cp values for the binary molten salt-based hBN nanocomposite with the highest loading concentration of nanoparticles (1.5 wt. %) in solid and liquid phases were 2 and 3.17 J/g K, respectively. The measured average cp value in the liquid phase for binary molten salt-based hBN nanocomposite with the highest loading concentration (1.5 wt. %) of nanoparticles revealed enhancement of ~180% in comparison with pure binary molten salt. Thermal stability measurements expressed enhancement of thermal stability in binary molten salt induced with hBN nanoparticles. Binary molten salt-based hBN nanocomposite with loading concentration of 1.5 wt. % represented ~16% enhancement in thermal stability over the binary molten salt.