Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rosdi, Farah Nurasyikin Md

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Potential Red Algae Fibre Waste as a Raw Material for Biocomposite5citations

Places of action

Chart of shared publication
Sarmin, Siti Noorbaini
1 / 6 shared
Roslan, Rasidi
1 / 1 shared
Bakar, Nurul Huda Abu
1 / 4 shared
Salim, Nurjannah
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sarmin, Siti Noorbaini
  • Roslan, Rasidi
  • Bakar, Nurul Huda Abu
  • Salim, Nurjannah
OrganizationsLocationPeople

article

Potential Red Algae Fibre Waste as a Raw Material for Biocomposite

  • Sarmin, Siti Noorbaini
  • Rosdi, Farah Nurasyikin Md
  • Roslan, Rasidi
  • Bakar, Nurul Huda Abu
  • Salim, Nurjannah
Abstract

<jats:p>Red algae are abundant worldwide, and their exploitation for the development of agar products has developed into a significant industry in recent years. Industrial processing of red algae produces a significant amount of solid fibre waste, which contributes to substantial environmental problems. Agar from red algae is mostly used in the food, cosmetic, and pharmaceutical industries. There has been very limited research on the use of red algae in lignocellulosic composites so far. As such, this project aims to fabricate red algae reinforced with polylactic acid (PLA) as composite materials and to investigate the composite's mechanical, physical, and durability properties, as well as its characterization. The composite is fabricated using an extruder and a hydraulic hot press machine in three different composition ratios: 200:0, 180:20, and 160:40 (PLA: fibre (g)). Each sample was subjected to tensile testing for mechanical properties, melt flow index (MFI), scanning electron microscopy (SEM) testing for physical properties, and thermogravimetric analysis (TGA) testing for thermal properties. For durability testing, the samples were buried underground to determine the weight loss of composites over two weeks. The results indicate that while red algae have exceptional thermal properties, however, the strength and durability of the composite decrease with the inclusion of fibre. It is recommended that fibres be treated with an alkaline solution to improve their characteristics before being used as a composite.</jats:p>

Topics
  • impedance spectroscopy
  • inclusion
  • scanning electron microscopy
  • melt
  • strength
  • composite
  • thermogravimetry
  • durability