Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Inaba, Masanori

  • Google
  • 3
  • 20
  • 78

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalysts42citations
  • 2018On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method36citations
  • 2018Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performancescitations

Places of action

Chart of shared publication
Kibsgaard, Jakob
1 / 15 shared
Dosche, Carsten
1 / 5 shared
Speck, Florian D.
1 / 9 shared
Arenz, Matthias
3 / 23 shared
Cherevko, Serhiy
1 / 22 shared
Secher, Niklas Mørch
1 / 3 shared
Dworzak, Alexandra
1 / 6 shared
Quinson, Jonathan
3 / 22 shared
Zana, Alessandro
1 / 5 shared
Paul, Michael T. Y.
1 / 3 shared
Oezaslan, Mehtap
2 / 16 shared
Bizzotto, Francesco
1 / 6 shared
Chorkendorff, Ib
1 / 97 shared
Sandbeck, Daniel J. S.
1 / 1 shared
Sørensen, Jakob Ejler
1 / 3 shared
Bucher, Jan
2 / 8 shared
Kunz, Sebastian
1 / 3 shared
Simonsen, Søren Bredmose
1 / 26 shared
Kuhn, Luise Theil
1 / 30 shared
Neumann, Sarah
1 / 3 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Kibsgaard, Jakob
  • Dosche, Carsten
  • Speck, Florian D.
  • Arenz, Matthias
  • Cherevko, Serhiy
  • Secher, Niklas Mørch
  • Dworzak, Alexandra
  • Quinson, Jonathan
  • Zana, Alessandro
  • Paul, Michael T. Y.
  • Oezaslan, Mehtap
  • Bizzotto, Francesco
  • Chorkendorff, Ib
  • Sandbeck, Daniel J. S.
  • Sørensen, Jakob Ejler
  • Bucher, Jan
  • Kunz, Sebastian
  • Simonsen, Søren Bredmose
  • Kuhn, Luise Theil
  • Neumann, Sarah
OrganizationsLocationPeople

article

On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method

  • Inaba, Masanori
  • Bucher, Jan
  • Arenz, Matthias
  • Quinson, Jonathan
Abstract

<p>We present a step-by-step tutorial to prepare proton exchange membrane fuel cell (PEMFC) catalysts, consisting of Pt nanoparticles (NPs) supported on a high surface area carbon, and to test their performance in thin film rotating disk electrode (TF-RDE) measurements. The TF-RDE methodology is widely used for catalyst screening; nevertheless, the measured performance sometimes considerably differs among research groups. These uncertainties impede the advancement of new catalyst materials and, consequently, several authors discussed possible best practice methods and the importance of benchmarking.</p><p>The visual tutorial highlights possible pitfalls in the TF-RDE testing of Pt/C catalysts. A synthesis and testing protocol to assess standard Pt/C catalysts is introduced that can be used together with polycrystalline Pt disks as benchmark catalysts. In particular, this study highlights how the properties of the catalyst film on the glassy carbon (GC) electrode influence the measured performance in TF-RDE testing. To obtain thin, homogeneous catalyst films, not only the catalyst preparation, but also the ink deposition and drying procedures are essential. It is demonstrated that an adjustment of the ink's pH might be necessary, and how simple control measurements can be used to check film quality. Once reproducible TF-RDE measurements are obtained, determining the Pt loading on the catalyst support (expressed as Pt wt%) and the electrochemical surface area is necessary to normalize the determined reaction rates to either surface area or Pt mass. For the surface area determination, so-called CO stripping, or the determination of the hydrogen underpotential deposition (Hupd) charge, are standard. For the determination of the Pt loading, a straightforward and cheap procedure using digestion in aqua regia with subsequent conversion of Pt(IV) to Pt(II) and UV-vis measurements is introduced.</p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • surface
  • Carbon
  • thin film
  • Hydrogen
  • gas chromatography
  • drying