Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Voet, Vincent S. D.

  • Google
  • 19
  • 38
  • 922

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2024Innovative Approaches for Manufacturing Epoxy-Modified Wood and Cellulose Fiber Compositescitations
  • 2024Enzymatic bulk synthesis, characterization, rheology, and biodegradability of biobased 2,5-bis(hydroxymethyl)furan polyesters10citations
  • 2023The effect of size and delignification on the mechanical properties of polylactic acid (PLA) biocomposites reinforced with wood fibres via extrusion7citations
  • 2020Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography127citations
  • 2018Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing230citations
  • 2015Bioinspired synthesis of well-ordered layered organic-inorganic nanohybrids10citations
  • 2015Bioinspired synthesis of well-ordered layered organic-inorganic nanohybrids:Mimicking the natural processing of nacre by mineralization of block copolymer templates10citations
  • 2014Double-crystalline PLLA-b-PVDF-b-PLLA triblock copolymers55citations
  • 2014Double-crystalline PLLA- b -PVDF- b -PLLA triblock copolymers:preparation and crystallization55citations
  • 2014Well-Defined Copolymers Based on Poly(vinylidene fluoride):From Preparation and Phase Separation to Application75citations
  • 2014Well-Defined Copolymers Based on Poly(vinylidene fluoride)75citations
  • 2014Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules4citations
  • 2014Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules4citations
  • 2013Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors61citations
  • 2013Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors61citations
  • 2013Block copolymer route towards poly(vinylidene fluoride)/poly(methacrylic acid)/nickel nanocomposites46citations
  • 2013Block copolymer route towards poly(vinylidene fluoride)/poly(methacrylic acid)/nickel nanocomposites46citations
  • 2012Preparation and self-assembly of two-length-scale A-b-(B-b-A)(n)-b-B multiblock copolymers23citations
  • 2012Preparation and self-assembly of two-length-scale A-b-(B-b-A)(n)-b-B multiblock copolymers23citations

Places of action

Chart of shared publication
Folkersma, Rudy
5 / 6 shared
Cosse, Renato
2 / 2 shared
Berg, Thijs Van Den
1 / 1 shared
Loos, Katja U.
12 / 56 shared
Post, Cornelis
1 / 1 shared
Parisi, Daniele
1 / 24 shared
Jongstra, Jesse Adrian
1 / 1 shared
Maniar, Dina
1 / 10 shared
Guit, Jarno
1 / 1 shared
Jager, Jan
2 / 2 shared
Tavares, Marjory B. L.
1 / 1 shared
Ye, Chongnan
1 / 3 shared
Hul, Jerzy
1 / 1 shared
Woortman, Albert J. J.
1 / 6 shared
Tietema, Martin
1 / 1 shared
Strating, Tobias
1 / 1 shared
Schnelting, Geraldine H. M.
1 / 1 shared
Xu, Jin
1 / 3 shared
Dijkstra, Peter
1 / 1 shared
Kumar, Kamlesh
2 / 8 shared
Brinke, Gerrit Ten
8 / 21 shared
Loos, Katja
7 / 29 shared
Meereboer, Niels. L.
2 / 2 shared
Hofman, Anton
1 / 6 shared
Ekenstein, Gerhard Alberda Van
1 / 3 shared
Hofman, Anton H.
1 / 5 shared
Ten Brinke, Gerrit
6 / 23 shared
Alberda Van Ekenstein, Gerhard
1 / 3 shared
Vukovic, Ivana
2 / 12 shared
Hosson, Jeff Th. M. De
1 / 119 shared
Vukovic, Zorica
2 / 6 shared
Punzhin, Sergey
2 / 8 shared
De Hosson, Jeff Th. M.
1 / 20 shared
Tichelaar, Martijn
2 / 2 shared
Mittelmeijer-Hazeleger, Marjo C.
2 / 3 shared
Tanase, Stefania
2 / 2 shared
Hermida-Merino, Daniel
2 / 24 shared
Faber, Martin
2 / 4 shared
Chart of publication period
2024
2023
2020
2018
2015
2014
2013
2012

Co-Authors (by relevance)

  • Folkersma, Rudy
  • Cosse, Renato
  • Berg, Thijs Van Den
  • Loos, Katja U.
  • Post, Cornelis
  • Parisi, Daniele
  • Jongstra, Jesse Adrian
  • Maniar, Dina
  • Guit, Jarno
  • Jager, Jan
  • Tavares, Marjory B. L.
  • Ye, Chongnan
  • Hul, Jerzy
  • Woortman, Albert J. J.
  • Tietema, Martin
  • Strating, Tobias
  • Schnelting, Geraldine H. M.
  • Xu, Jin
  • Dijkstra, Peter
  • Kumar, Kamlesh
  • Brinke, Gerrit Ten
  • Loos, Katja
  • Meereboer, Niels. L.
  • Hofman, Anton
  • Ekenstein, Gerhard Alberda Van
  • Hofman, Anton H.
  • Ten Brinke, Gerrit
  • Alberda Van Ekenstein, Gerhard
  • Vukovic, Ivana
  • Hosson, Jeff Th. M. De
  • Vukovic, Zorica
  • Punzhin, Sergey
  • De Hosson, Jeff Th. M.
  • Tichelaar, Martijn
  • Mittelmeijer-Hazeleger, Marjo C.
  • Tanase, Stefania
  • Hermida-Merino, Daniel
  • Faber, Martin
OrganizationsLocationPeople

article

Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

  • Vukovic, Ivana
  • Voet, Vincent S. D.
  • Brinke, Gerrit Ten
  • Hosson, Jeff Th. M. De
  • Vukovic, Zorica
  • Loos, Katja U.
  • Punzhin, Sergey
Abstract

<p>Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex -polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology.</p>

Topics
  • porous
  • pyrolysis
  • surface
  • nickel
  • phase
  • strength
  • porosity
  • copolymer
  • block copolymer
  • gyroid
  • metal foam