People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sokolova, Anastasiia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Red-Emitting CsPbI3 /ZnSe Colloidal Nanoheterostructures with Enhanced Optical Properties and Stabilitycitations
- 2024Near-infrared two-photon excited photoluminescence from Yb3+-doped CsPbClxBr3−x perovskite nanocrystals embedded into amphiphilic silica microspherescitations
- 2023Anion-assisted Yb3+ and Mn2+ doping of 0D and 2D lead halide perovskite nanostructurescitations
- 2021Interface Chemical Modification between All-Inorganic Perovskite Nanocrystals and Porous Silica Microspheres for Composite Materials with Improved Emissioncitations
- 2019EFFECT OF LIQUID NITROGEN TREATMENT ON LEAD-FREE (CH3NH3)3BI2I9 PEROVSKITES FILMS
- 2019OPTICAL PROPERTIES STABILITY OF CSPBX3 NANOCRYSTALS EMBEDDED IN POROUS GLASS MATRIX
Places of action
Organizations | Location | People |
---|
document
OPTICAL PROPERTIES STABILITY OF CSPBX3 NANOCRYSTALS EMBEDDED IN POROUS GLASS MATRIX
Abstract
All-inorganic perovskite nanocrystals with chemical formula CsPbX3 (X = Cl, Br, and I) attract much scientific attention since they possess unique optical properties, such as high extinction coefficients and values of emission quantum yield, together with ease of their synthesis and tunability in the chemical composition. However, these nanomaterials are still far from their large-scale applications since they lack stability. Here, it was shown that the use of a nanoporous glass matrix allowed obtaining the samples with blue, green, and red perovskite nanocrystals possessing reproducible optical characteristics which are almost similar to that of their colloidal solution. Such a matrix also prevented the fast degradation of nanocrystals both at the storage in ambient and under UV-light exposure and/or in the conditions of increased humidity.