People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adam, Ondřej
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Thermal stability of electron beam welded AlCoCrFeNi2.1 alloy
- 2023Electron beam welding of AlCoCrFeNi2.1 high entropy alloy to EN 1.4301 austenitic steelcitations
- 2022EFFECT OF Cr AND Ni ELEMENTS ON THE MICROSTRUCTURE AND PROPERTIES OF Cu-Fe-BASED IMMISCIBLE ALLOYS
- 2022ELECTRON BEAM WELDING OF AICoCrFeNi2.1 EUTECTIC HIGH-ENTROPY ALLOYcitations
- 2022MECHANICAL ALLOYING OF CUFE IMMISCIBLE ALLOY USING DIFFERENT MILLING CONDITIONS
- 2022Effect of Preheating on the Residual Stress and Material Properties of Inconel 939 Processed by Laser Powder Bed Fusioncitations
- 2021Ultrafine-grained Cu50(FeCo)50 immiscible alloy with excellent thermal stabilitycitations
- 2021Microstructure evolution of Cu-Fe-based immiscible alloys prepared by powder metallurgycitations
- 2020The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sinteringcitations
Places of action
Organizations | Location | People |
---|
document
ELECTRON BEAM WELDING OF AICoCrFeNi2.1 EUTECTIC HIGH-ENTROPY ALLOY
Abstract
Eutectic high-entropy alloys have become a significantly studied type of material due to their combination of strength and ductility. However, previous research has focused primarily on manufacture, solidification behaviour and mechanical properties. Only a small part of the research has been devoted to welding. This paper is focused on evaluating the weldability of eutectic high-entropy alloy AICoCrFeNi2.1 in the as-cast state without further heat treatment. The electron beam welding process was performed twice at the same parameters, except for the beam current. Properties such as the depth of the remelted layer, the formation of the heat-affected zone, and the presence of undesirable defects in the welded joints were observed using light and electron microscopy. At the same time, material properties in the form of microstructural stability, chemical composition, and hardness of the welded joints were evaluated.