Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Szulc, Jacek

  • Google
  • 3
  • 6
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Selected properties of RAMOR 500 steel welded joints by hybrid PTA-MAG20citations
  • 2020Selected properties of hybrid PTA-MAG welded joints of thermomechanically rolled s700mc steel1citations
  • 2018Properties and microstructure of hybrid PLASMA+MAG welded joints of thermomechanically treated S700MC steelcitations

Places of action

Chart of shared publication
Skowrońska, Beata
3 / 9 shared
Chmielewski, Tomasz M.
3 / 31 shared
Baranowski, Michał
1 / 4 shared
Bober, Mariusz
1 / 7 shared
Sałaciński, Tadeusz
2 / 5 shared
Świercz, Rafał
2 / 12 shared
Chart of publication period
2022
2020
2018

Co-Authors (by relevance)

  • Skowrońska, Beata
  • Chmielewski, Tomasz M.
  • Baranowski, Michał
  • Bober, Mariusz
  • Sałaciński, Tadeusz
  • Świercz, Rafał
OrganizationsLocationPeople

document

Selected properties of hybrid PTA-MAG welded joints of thermomechanically rolled s700mc steel

  • Sałaciński, Tadeusz
  • Skowrońska, Beata
  • Szulc, Jacek
  • Chmielewski, Tomasz M.
  • Świercz, Rafał
Abstract

<p>The aim of this paper is to describe the selected mechanical properties and microstructure of butt welded joints obtained by the hybrid Plasma+MAG method of S700 MC steel (high strength Re=700 MPa). The results of metallographic research of welded joints, microstructure of the weld and heat affected zone, hardness distribution and impact toughness are presented. The tensile test shown that strength of welded joints was slightly reduced and the bending test revealed no crack formation in the weld. The impact toughness of measured welded samples with V-notch in HAZ (heat affected zone) reached high values that are higher comparing to samples with notch placed in the weld area. The investigation results show that the use of hybrid plasma + MAG welding arc does not significantly change the structure and deteriorate properties of welded S700MC thermomechanically treated high strength steel.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • crack
  • strength
  • steel
  • hardness
  • bending flexural test