Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petravić, Mladen

  • Google
  • 1
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Ta<sub>2</sub>N<sub>3</sub> nanocrystals grown in Al<sub>2</sub>O<sub>3</sub> thin layers3citations

Places of action

Chart of shared publication
Bernstorff, Sigrid
1 / 24 shared
Buljan, Maja
1 / 1 shared
Šarić, Iva
1 / 2 shared
Salamon, Krešimir
1 / 7 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Bernstorff, Sigrid
  • Buljan, Maja
  • Šarić, Iva
  • Salamon, Krešimir
OrganizationsLocationPeople

article

Ta<sub>2</sub>N<sub>3</sub> nanocrystals grown in Al<sub>2</sub>O<sub>3</sub> thin layers

  • Bernstorff, Sigrid
  • Petravić, Mladen
  • Buljan, Maja
  • Šarić, Iva
  • Salamon, Krešimir
Abstract

<jats:p>Tantalum nitride nanoparticles (NPs) and cubic bixbyite-type Ta<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> nanocrystals (NCs) were grown in (Ta–N+Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>)/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> periodic multilayers (MLs) after thermal treatment. The MLs were prepared by magnetron deposition at room temperature and characterized using grazing incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR), grazing incidence X-ray diffraction (GIXRD), secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). We found amorphous tantalum nitride NPs at 600–800 °C, with a high degree of ordering along the surface normal and short-range ordering within the layers containing tantalum (metallic layers). At an even higher annealing temperature of 900 °C the NPs crystallize in the rare and relatively unexplored Ta<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> phase. However, the environment, morphology and spatial ordering of the NCs depend on the thickness of the metallic layers. For 12 nm thick metallic layers, the Ta<jats:sub>2</jats:sub>N<jats:sub>3</jats:sub> NCs have an average diameter of 6 nm and they are confined and short-range ordered within the metallic layers. When the metallic layers are thinner, the NCs grow over 20 nm in diameter, show no spatial ordering, while the periodic structure of the ML was completely destroyed. The results presented here demonstrate a self-assembly process of tantalum nitride NPs, the morphological properties of which depend on the preparation conditions. This can be used as a generic procedure to realize highly tunable and designable optical properties of thin films containing transition-metal nitride nanocrystals.</jats:p>

Topics
  • nanoparticle
  • Deposition
  • surface
  • amorphous
  • phase
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • nitride
  • annealing
  • spectrometry
  • self-assembly
  • tantalum
  • selective ion monitoring
  • secondary ion mass spectrometry
  • X-ray scattering