People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Breitung, Ben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Improved Performance of High‐Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li‐Ion Batteriescitations
- 2024Dealing with Missing Angular Sections in NanoCT Reconstructions of Low Contrast Polymeric Samples Employing a Mechanical In Situ Loading Stage
- 2024Delithiation-induced secondary phase formation in Li-rich cathode materials
- 2023Dealing with missing angular sections in nanoCT reconstructions of low contrast polymeric samples employing a mechanical in situ loading stage
- 2023Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
- 2023Inkjet‐Printed Tungsten Oxide Memristor Displaying Non‐Volatile Memory and Neuromorphic Propertiescitations
- 2022Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolutioncitations
- 2019Thin Films of Thermally Stable Ordered Mesoporous $Rh_{2}O_{3}(I)$ for Visible-Light Photocatalysis and Humidity Sensingcitations
- 2018Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: Investigation into volume expansion, gas evolution, and particle fracturecitations
- 2018Formation of nanocrystalline graphene on germaniumcitations
- 2017Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteriescitations
- 2017[Ag₁₁₅S₃₄(SCH₂C₆H₄$^t$Bu)₄7(dpph)₆]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanoclustercitations
- 2016Microwave synthesis of high-quality and uniform 4 nm ZnFe₂O₄ nanocrystals for application in energy storage and nanomagnetics
- 2013Influence of particle size and fluorination ratio of CFₓ precursor compounds on the electrochemical performance of C-FeF₂ nanocomposites for reversible lithium storagecitations
Places of action
Organizations | Location | People |
---|
article
Influence of particle size and fluorination ratio of CFₓ precursor compounds on the electrochemical performance of C-FeF₂ nanocomposites for reversible lithium storage
Abstract
Systematical studies of the electrochemical performance of CFx-derived carbon–FeF2 nanocomposites for reversible lithium storage are presented. The conversion cathode materials were synthesized by a simple one-pot synthesis, which enables a reactive intercalation of nanoscale Fe particles in a CFx matrix, and the reaction of these components to an electrically conductive C–FeF2 compound. The pretreatment and the structure of the utilized CFx precursors play a crucial role in the synthesis and influence the electrochemical behavior of the conversion cathode material. The particle size of the CFx precursor particles was varied by ball milling as well as by choosing different C/F ratios. The investigations led to optimized C–FeF2 conversion cathode materials that showed specific capacities of 436 mAh/g at 40 °C after 25 cycles. The composites were characterized by Raman spectroscopy, X-Ray diffraction measurements, electron energy loss spectroscopy and TEM measurements. The electrochemical performances of the materials were tested by galvanostatic measurements.