People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eensalu, Jako
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2022Thermal decomposition of tris(O-ethyldithiocarbonato)-antimony(III)—a single-source precursor for antimony sulfide thin filmscitations
- 2019Uniform Sb<sub>2</sub>S<sub>3</sub>optical coatings by chemical spray methodcitations
- 2019Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windowscitations
Places of action
Organizations | Location | People |
---|
article
Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows
Abstract
<jats:p>The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical absorption coefficient, such as Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (>10<jats:sup>5</jats:sup> cm<jats:sup>−1</jats:sup> at 450 nm), offer semitransparency, appreciable efficiency, and long-term durability at low cost. Oxide-free throughout the Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> layer thickness, as confirmed by combined studies of energy dispersive X-ray spectroscopy and synchrotron soft X-ray emission spectroscopy, semitransparent Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO<jats:sub>2</jats:sub>/Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>/P3HT/Au solar cell, a power conversion efficiency (PCE) of 5.5% at air mass 1.5 global (AM1.5G) is achieved, which is a record among spray-deposited Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> solar cells. An average visible transparency (AVT) of 26% of the back-contact-less ITO/TiO<jats:sub>2</jats:sub>/Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> solar cell stack in the wavelength range of 380–740 nm is attained by tuning the Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> absorber thickness to 100 nm. In scale-up from mm<jats:sup>2</jats:sup> to cm<jats:sup>2</jats:sup> areas, the Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> hybrid solar cells show a decrease in efficiency of only 3.2% for an 88 mm<jats:sup>2</jats:sup> Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> solar cell, which retains 70% relative efficiency after one year of non-encapsulated storage. A cell with a PCE of 3.9% at 1 sun shows a PCE of 7.4% at 0.1 sun, attesting to the applicability of these solar cells for light harvesting under cloud cover.</jats:p>