People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grünewald, Lukas
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Oxygen annealing: a tool for tailoring the pinning landscape in GdBCO thin films
- 2022Analysis of Superconducting Thin Films in a Modern FIB/SEM Dual-Beam Instrument
- 2022Structural and chemical properties of superconducting rare-earth barium copper oxide/BaHfO3 nanocomposites with rare-earth mixtures
- 2022Microstructure, pinning properties, and aging of CSD-grown SmBa$_2$Cu$_3$O$_{7−δ}$ films with and without BaHfO$_3$ nanoparticlescitations
- 2022Electron Microscopic Investigation of Superconducting Fe- and Cu-based Thin Films
- 2021Analysis of Superconducting Thin Films in a Modern FIB/SEM Dual-Beam Instrument
- 2020Structural and chemical properties of superconducting Co-doped BaFe$_2$As$_2$ thin films grown on CaF$_2$citations
- 2020Pulsed Laser Deposition of quasi-multilayer superconducting Ba(Fe$_{0.92}$Co$_{0.08}$)2As$_{2}$-BaHfO$_{3}$ nanocomposite filmscitations
- 2019Fabrication of phase masks from amorphous carbon thin films for electron-beam shapingcitations
- 2019Pulsed Laser Deposition of quasi-multilayer superconducting Ba(Fe0.92Co0.08)2As2-BaHfO3 nanocomposite films
Places of action
Organizations | Location | People |
---|
article
Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping
Abstract
Background: Electron-beam shaping opens up the possibility for novel imaging techniques in scanning (transmission) electron microscopy (S(T)EM). Phase-modulating thin-film devices (phase masks) made of amorphous silicon nitride are commonly used to generate a wide range of different beam shapes. An additional conductive layer on such a device is required to avoid charging under electron-beam irradiation, which induces unwanted scattering events.Results: Phase masks of conductive amorphous carbon (aC) were successfully fabricated with optical lithography and focused ion beam milling. Analysis by TEM shows the successful generation of Bessel and vortex beams. No charging or degradation of the aC phase masks was observed.Conclusion: Amorphous carbon can be used as an alternative to silicon nitride for phase masks at the expense of a more complex fabrication process. The quality of arbitrary beam shapes could benefit from the application of phase masks made of amorphous C.