Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Groat, Lee

  • Google
  • 1
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Characterization of Hydrothermal Alteration in Palagonitized Deposits Using Short-Wave Infrared Spectroscopy and X-Ray Diffraction Methods2citations

Places of action

Chart of shared publication
Abdale, Lindsey
1 / 1 shared
Leiter, Sophia
1 / 1 shared
Wilson, Sasha
1 / 2 shared
Russell, Kelly
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Abdale, Lindsey
  • Leiter, Sophia
  • Wilson, Sasha
  • Russell, Kelly
OrganizationsLocationPeople

article

Characterization of Hydrothermal Alteration in Palagonitized Deposits Using Short-Wave Infrared Spectroscopy and X-Ray Diffraction Methods

  • Abdale, Lindsey
  • Leiter, Sophia
  • Wilson, Sasha
  • Groat, Lee
  • Russell, Kelly
Abstract

<jats:title>Abstract</jats:title><jats:p>In this contribution, we evaluate the applicability of short-wave infrared spectroscopy to characterizing mineral assemblages in palagonitized glaciovolcanic edifices at Cracked Mountain, a basaltic volcano within the Garibaldi Volcanic Belt, and Kima Kho, a basaltic tuya within the Northern Cordilleran Volcanic Province. Second-order evaluation of the approach was established through comparison with data obtained by semi-empirical X-ray diffraction methods. Reflectance spectra show an increase in the depth of water and hydroxyl bands in samples with increasing amounts of hydrated minerals and decreasing amounts of amorphous materials (as determined through X-ray diffraction), indicating that the relative strengths of H2O- and OH-related absorption features may be used as a proxy for the degree of palagonite alteration (hydrated minerals crystallized from basaltic glass). In addition, the full width at half maximum of the OH- and H2O-related absorption bands decreased with the formation of zeolites, indicating that the full width at half maximum of OH- and H2O-related features may be used to estimate the degree of crystallinity across the progressive palagonitization process. Finally, short-wave infrared spectroscopy revealed a decrease in band depth of water-related absorption features with no change in the full width at half maximum along the devitrification or alteration process that converts analcime to chabazite to wairakite, indicating that spectroscopy may be used to identify the final dehydration and cementation stages of palagonitization. Results show that the short-wave infrared spectroscopy method is more robust in identifying poorly crystalline hydrated samples, while X-ray diffraction methods are better suited to understanding the crystalline components of palagonite. Short-wave infrared spectroscopy is a remote sensing technique that has proven to successfully characterize the state of H2O in hydrated clay-rich material and thus may serve as an invaluable tool in identifying stages of palagonitization not only on subglacial edifices on Earth but also on off-planet environs, including the Martian surface.</jats:p>

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • amorphous
  • x-ray diffraction
  • glass
  • glass
  • strength
  • crystallinity
  • infrared spectroscopy
  • diffraction method