People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baltatu, Madalina Simona
Isaac Newton Group
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Bredigite-CNTs Reinforced Mg-Zn Bio-Composites to Enhance the Mechanical and Biological Properties for Biomedical Applicationscitations
- 2022Carbon nanotube (CNT) encapsulated magnesium-based nanocomposites to improve mechanical, degradation and antibacterial performances for biomedical device applicationscitations
- 2022Experimental Research on New Developed Titanium Alloys for Biomedical Applicationscitations
- 2022Mechanical Characterization and In Vitro Assay of Biocompatible Titanium Alloyscitations
- 2021New Titanium Alloys, Promising Materials for Medical Devicescitations
- 2021New Titanium Alloys, Promising Materials for Medical Devicescitations
- 2020Development of New Advanced Ti-Mo Alloys for Medical Applicationscitations
- 2019Characterization and Mechanical Proprieties of New TiMo Alloys Used for Medical Applicationscitations
- 2019Biocompatible Titanium Alloys used in Medical Applicationscitations
- 2019Ecological process of energy growth of hydraulic turbines used in protected areas in Romania
- 2017Ti-Mo-Zr-Ta Alloy for Biomedical Applications: Microstructures and Mechanical Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Biocompatible Titanium Alloys used in Medical Applications
Abstract
<jats:p> At global level, there is a continuing concern for the research and development of alloys for medical and biomedical applications. Metallic biomaterials are used in various applications of the most important medical fields like orthopedic, dental and cardiovascular. The main metallic biomaterials used in human body are stainless steels, Co-based alloys and Ti-based alloys. Titanium and its alloys are of greater interest in medical applications because they exhibit characteristics required for implant materials, namely, good mechanical properties (less elasticity modulus than stainless steel or CoCr alloys, fatigue strength, high corrosion resistance), high biocompatibility. The aim of this review is to describe and compare the main characteristics (mechanical properties, corrosion resistance and biocompatibility) for latest research of nontoxic Ti alloys biomaterials used for medical field. </jats:p>