People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nicoleta, Simionescu
"Dunarea de Jos" University of Galati
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Enhancement of Corrosion Resistance Properties of Electrodeposited Ni/nano-TiC Composite Layers
- 2022The Effect of Nano-ZrO2 Dispersed Phase into Cobalt Plating Electrolyte on Layer Thickness and Current Efficiencycitations
- 2022Nanostructuring Effect of Nano-CeO2 Particles Reinforcing Cobalt Matrix during Electrocodeposition Process
- 2021Reactivity and Corrosion Behaviors of Ti6Al4V Alloy Implant Biomaterial under Metabolic Perturbation Conditions in Physiological Solutionscitations
- 2019Electrochemical in vitro Properties of 316L Stainless Steel for Orthodontic Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical in vitro Properties of 316L Stainless Steel for Orthodontic Applications
Abstract
<jats:p> 316L Stainless steels are widely used in biomedical applications with respect to their excellent corrosion resistance, nonmagnetic properties, high ductility and acceptable biocompatibility. There have been made electrochemical studies in-vitro in order to determine the corrosion reactions, which are necessary for foreseeing the behavior of the materials used in orthodontic applications. The degradation of metals and alloys in the human body is a combination of effects due to corrosion and mechanical activities. In dentistry, 316L stainless steel are used in a variety of applications: sterilized instruments, endodontic files in root canal therapy, metal posts in root canal treated teeth, temporary crowns, arch wires and brackets in orthodontics, a necessary condition for these applications must to resist to pitting corrosion. The pitting corrosion can be observed only in the case of passivable steels and in the presence of halogen or sulphur ions, in saline or acidic media like the human body. this type of corrosion propagates under the form of small pits, which give off to a significant quantity of metal ions, being very dangerous to the body. The metal ions resulted from the corrosive processes have allergic, carcinogenic and cytotoxic effects. The aim of this work was to evaluate the corrosion behavior of 316L stainless steel immersed in two artificial saliva solutions. The electrochemical measurements such as: open Circuit Potential (OCP), linear Polarization Resistance (LRP), and electrochemical Impedance Spectroscopy (EIS), methods were used to fulfill the corrosion evaluation. The research work concludes that the increase of the pH with a higher concentration of chloride contents lead to a lowest corrosion resistance while a decrease of the pH with a lowest concentration of chlorides contents reveals a higher corrosion resistance. </jats:p>