Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rohim, Mohamed

  • Google
  • 3
  • 5
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024AA5754–Al2O3 Nanocomposite Prepared by Friction Stir Processing: Microstructural Evolution and Mechanical Performance11citations
  • 2023Effects of Partial-Contact Tool Tilt Angle on Friction Stir Welded AA1050 Aluminum Joint Properties16citations
  • 2021Mechanical and Tribological Performance of Self-Cured Poly Methyl Methacrylate Reinforced by Alumina Nanowires and Zirconia Nanoparticles for Denture Applications4citations

Places of action

Chart of shared publication
Mohammed, Moustafa
1 / 1 shared
Derazkola, Hamed Aghajani
2 / 6 shared
Abdullah, Mahmoud E.
2 / 3 shared
Kubit, Andrzej
1 / 7 shared
Mohammed, M. M.
1 / 1 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Mohammed, Moustafa
  • Derazkola, Hamed Aghajani
  • Abdullah, Mahmoud E.
  • Kubit, Andrzej
  • Mohammed, M. M.
OrganizationsLocationPeople

article

Mechanical and Tribological Performance of Self-Cured Poly Methyl Methacrylate Reinforced by Alumina Nanowires and Zirconia Nanoparticles for Denture Applications

  • Rohim, Mohamed
Abstract

<jats:p> Polymethyl methacrylate (PMMA) is one of the common widely accepted biomaterials in prosthetic dentistry due to its acceptable advantages, since 1937. In the present work, PMMA reinforced with Al2O3 nanowires (Al2O3 NWs) and ZrO2 nanoparticles (ZrO2 NPs) were fabricated by a self-curing method. Mechanical and tribological tests were conducted to study the effect of nanofillers on the mechanical and tribological performance of PMMA nanocomposites. Compression and microhardness tests, as mechanical tests, were accomplished to estimate the elastic modulus and microhardness number of the present nanocomposites. Also, tribological properties of unfilled PMMA and its nanocomposites were realized by pin-on-disk tester under dry sliding conditions. Wear test was conducted at room temperature under applied loads of 10, 20, 30, 40, and 50 N at a constant sliding speed and distance of 1.256 m/s and 226 m, respectively to study wear rate and coefficient of friction (COF) of the nanocomposites. Experimental results revealed that the elastic modulus, microhardness, wear rate, and COF were enhanced with increasing nanofiller content up to 0.5 and 0.7 wt. % of Al2O3 NWs and ZrO2 NPs, respectively. Also, wear rate increased with increasing applied loads up to 50 N, while COF decreased with increasing applied loads up to 40 N. Finally, specimens� worn surfaces were examined and imaged using scanning electron microscope (SEM). </jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • wear test
  • biomaterials
  • curing
  • coefficient of friction