People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amzoiu, Emilia
University of Medicine and Pharmacy of Craiova
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Bone - Graft Delivery Systems of Type PLGA- gentamicin and Collagen - hydroxyapatite - gentamicine
Abstract
<jats:p> The purpose of this study was the synthesis of two types of biodegradable materials with synthetic polymers (PLGA) or natural polymers (collagen) and hydroxyapatite, followed by determination of the encapsulation percentage of the drug in the polymer. Regardless of the chosen method, the percentage of the encapsulated drug was found to be quite high: 15.92% in the Coll-HA-Genta material and 19.59% respectively in the PLGA-Genta biocomposite. The therapeutic value of gentamicin was improved by encapsulating it in delivery systems, contributing to sustained release for a long time (about 30 days). </jats:p>