People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raza, Abbas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023STUDY AND ANALYSIS OF METAL PARTS FABRICATED THROUGH FUSED DEPOSITION MODELLING, DE-BINDING AND SINTERING PROCESSES
- 2023An in-depth evaluation of surface characteristics and key machining responses in WEDM of aerospace alloy under varying electric discharge environmentscitations
- 2023Investigation of the Process-Induced Defects in Metal Fused Deposition Modeling Process for Ultrafuse 316L Stainless Steel
Places of action
Organizations | Location | People |
---|
article
Investigation of the Process-Induced Defects in Metal Fused Deposition Modeling Process for Ultrafuse 316L Stainless Steel
Abstract
The current article presents a case study of the defects that can occur in the metal fused deposition modeling (FDM) process, a popular additive manufacturing technique for producing metal parts. The metal parts of Ultrafuse 316L SS filament (a metal-polymer composite) were produced and then subjected to de-binding and sintering. The defects in the brown parts (after de-binding) and the silver parts (after sintering) were analyzed carefully. The main defects detected include brittleness, cracks, blisters, layer delamination, part deformation, and porosity. Further, the formation of these defects was found to be influenced by the process parameters such as heating rate, holding time, temperature, and atmosphere. The analysis of these effects suggests to use furnace temperature of 310 °C, heating rate of 1 °C/min and holding time of around 10 to 15 minutes to minimize the defects. As regard to the atmosphere, vacuum is preferred over other environments to produce parts with reduced defects and enhanced quality.