Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Popescu, Roxana Cristina

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Engineered 3D-printed poly(vinyl alcohol) vascular grafts: Impact of thermal treatment and functionalizationcitations

Places of action

Chart of shared publication
Alexandrescu, Laurentia
1 / 3 shared
Cozorici, Derniza
1 / 1 shared
Necolau, Madalina-Ioana
1 / 1 shared
Luque, Rafael
1 / 9 shared
Tanasa, Eugenia
1 / 1 shared
Zaharia, Catalin
1 / 2 shared
Radu, Ionut-Cristian
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Alexandrescu, Laurentia
  • Cozorici, Derniza
  • Necolau, Madalina-Ioana
  • Luque, Rafael
  • Tanasa, Eugenia
  • Zaharia, Catalin
  • Radu, Ionut-Cristian
OrganizationsLocationPeople

article

Engineered 3D-printed poly(vinyl alcohol) vascular grafts: Impact of thermal treatment and functionalization

  • Alexandrescu, Laurentia
  • Cozorici, Derniza
  • Necolau, Madalina-Ioana
  • Luque, Rafael
  • Popescu, Roxana Cristina
  • Tanasa, Eugenia
  • Zaharia, Catalin
  • Radu, Ionut-Cristian
Abstract

<jats:p>Cardiovascular diseases, a leading cause of global mortality, are driving increased demand for artificial blood vessels for surgical repair. This study discloses the fabrication of three-dimensional (3D)-printed small blood vessels as tissue-engineered grafts. Large-diameter artery and vein grafts are readily available in the market, but small-diameter blood vessels face issues due to the lack of suitable materials. Lysine-biofunctionalized and unmodified poly(vinyl alcohol) grafts (PVA grafts) (2 mm inner diameter and 3 mm outer diameter) suitable for veins and venules were designed using Fusion 360 software, Autodesk Fusion. The PVA channels were fabricated from the 3D virtual model through fused deposition modeling using a PVA filament. These channels underwent thermal treatment to adjust their crystallinity, chemical crosslinking, and functionalization to optimize their mechanical properties and biocompatibility. Crosslinking and biofunctionalization were assessed using Fourier-transform infrared spectroscopy with attenuated total reflectance, while X-ray diffraction and differential scanning calorimetry were utilized for structural analysis. PVA grafts were biologically tested using three specific types of cell cultures: bEnd.3 brain endothelial cells, L929 fibroblast cells, and U937 monocyte-like cells. The hemocompatibility of the optimized vascular grafts was evaluated using horse blood, following the guidelines outlined in ASTM F756-13 Standard Practice for Assessment of Hemolytic Properties of Materials. The direct method for hemoglobin determination was specifically employed. Additionally, we developed an external polyethylene terephthalate glycol (PETG) 3D-printed platform to house the PVA grafts in parallel. The assembled platform (PETG and PVA graft) was connected to both an inlet and an outlet to facilitate the passage of an aqueous flow through the internal section of the PVA grafts during a flow test conducted under simulated body conditions (vacuum and blood pressure: 40 mbar). The flow was induced by a vacuum pump connected to the outlet of the platform, while the inlet was connected to a feeding glass. In summation, we have established a suitable protocol for producing small vascular grafts and demonstrated that the optimization process could significantly affect graft properties.</jats:p>

Topics
  • Deposition
  • x-ray diffraction
  • glass
  • glass
  • differential scanning calorimetry
  • functionalization
  • alcohol
  • crystallinity
  • biocompatibility
  • infrared spectroscopy