People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malda, Jos
Utrecht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructscitations
- 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructscitations
- 20243D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Modelscitations
- 20233D printed magneto-active microfiber scaffolds for remote stimulation of 3D in vitro skeletal muscle modelscitations
- 20233D Printed Magneto‐Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Modelscitations
- 20233D printed and punched porous surfaces of a non-resorbable, biphasic implant for the repair of osteochondral lesions improves repair tissue adherence and ingrowth
- 2023Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interfacecitations
- 2021The Complexity of Joint Regeneration: How an Advanced Implant could Fail by Its In Vivo Proven Bone Componentcitations
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinkingcitations
- 2020Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assemblycitations
- 2020A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulationcitations
- 2020A composite hydrogel-3D printed thermoplast osteochondral anchor as an example for a zonal approach to cartilage repair: in vivo performance in a long-term equine modelcitations
- 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfacescitations
- 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfacescitations
- 2020Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Modelcitations
- 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repaircitations
- 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repaircitations
- 2020Using 3D-printing to fabricate a microfluidic vascular model to mimic arterial thrombosis
- 2020Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Modelcitations
- 2020Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model
- 2019T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage
- 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration
- 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regenerationcitations
- 2019Arthroscopic determination of cartilage proteoglycan content and collagen network structure with near-infrared spectroscopycitations
- 2019A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Roboticscitations
- 2019Volumetric Bioprinting of Complex Living-Tissue Constructs within Secondscitations
- 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites
- 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel compositescitations
- 2018Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Compositescitations
- 2017Assessing bioink shape fidelity to aid material development in 3D bioprintingcitations
- 2017Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffoldscitations
- 2017Triblock copolymers based on epsilon-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffoldscitations
- 2017Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography datacitations
- 2016A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applicationscitations
- 2016Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprintingcitations
- 2014Development and characterisation of a new bioink for additive tissue manufacturingcitations
- 2014Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructscitations
- 2014Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs
Places of action
Organizations | Location | People |
---|
article
The Complexity of Joint Regeneration: How an Advanced Implant could Fail by Its In Vivo Proven Bone Component
Abstract
Articular cartilage damage is a major challenge in healthcare due to the lack of long-term repair options. There are several promising regenerative implant-based approaches for the treatment, but the fixation of the implant remains a significant challenge. This study evaluated the potential for repair of an osteochondral implant produced through a novel combined bioprinting-based chondral-bone integration, with and without cells, in an equine model. Implants consisted of a melt electrowritten polycaprolactone (PCL) framework for the chondral compartment, which was firmly integrated with a bone anchor. The bone anchor was produced by extrusion-based printing of a low-temperature setting bioceramic material that had been proven to be effective for osteo-regeneration in an orthotopic, non-load bearing and non-articular site in the same species in an earlier in vivo study. Articular cartilage-derived progenitor cells were seeded into the PCL framework and cultured for 28 days in vitro in the presence of bone morphogenetic protein-9 (BMP-9), resulting in the formation of abundant extracellular matrix rich in glycosaminoglycans (GAGs) and type II collagen. The constructs were implanted in the stifle joints of Shetland ponies with cell-free scaffolds as controls. Clinical signs were monitored, and progression of healing was observed non-invasively through radiographic examinations and quantitative gait analysis. Biochemical and histological analyses 6 months after implantation revealed minimal deposition of GAGs and type II collagen in the chondral compartment of the defect site for both types of implants. Quantitative micro-computed tomography showed collapse of the bone anchor with low volume of mineralized neo-bone formation in both groups. Histology confirmed that the PCL framework within the chondral compartment was still present. It was concluded that the collapse of the osteal anchor, resulting in loss of the mechanical support of the chondral compartment, strongly affected overall outcome, precluding evaluation of the influence of BMP-9 stimulated cells on in vivo cartilage regeneration.