Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shazad, Atif

  • Google
  • 2
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Evaluation of preheating impact on weld residual stresses in AH-36 steel using Finite Element Analysis1citations
  • 2022Effect of composition and microstructure on the rusting of MS rebars and ultimately their impact on mechanical behavior4citations

Places of action

Chart of shared publication
Zaidi, Asad A.
1 / 2 shared
Sattar, Mohsin
1 / 1 shared
Shakoor, Abdul
1 / 4 shared
Akhtar, Maaz
1 / 1 shared
Jadoon, Junaid
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Zaidi, Asad A.
  • Sattar, Mohsin
  • Shakoor, Abdul
  • Akhtar, Maaz
  • Jadoon, Junaid
OrganizationsLocationPeople

article

Evaluation of preheating impact on weld residual stresses in AH-36 steel using Finite Element Analysis

  • Shazad, Atif
  • Zaidi, Asad A.
Abstract

<jats:p>Shipbuilding industry is a valuable and profit earning industry which plays a vital role in country’s economic development. Ships have crucial impact on country’s trade due to necessary support for maritime transportation. Moreover, ships can be utilized for protecting coastal area. Steel chiefly utilized for ships construction due to its good strength and durability. This study emphasizes on residual stress analysis of AH-36 shipbuilding steel. Abaqus software is utilized for finite element analysis to evaluate residual stresses. Mitigation of these residual stresses is very essential; hence preheating technique is discussed in this study. Preheating was conducted at three temperatures i.e., 100ºC,150ºC and 200ºC. Results indicate that Von Mises stresses were decreased effectively due to preheating. 12.6%, 21% and 45.6% reduction were observed at preheating temperatures 100ºC, 150ºC and 200ºC respectively. Further evaluation of stresses revealed that due to preheating of base plate, longitudinal stresses reduced to 21.3%, 44% and 52.4% by increasing preheating temperature from 100ºC,150ºC and 200ºC, respectively. Mitigation of thermal gradient between weld zone and base plate resulted in reduction in overall stresses of base plate.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • steel
  • durability
  • finite element analysis