Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Varga, Ján

  • Google
  • 1
  • 4
  • 4

Technical University of Košice

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022NUMERICAL AND EXPERIMENTAL STUDIES ON CLINCH-BONDED HYBRID JOINING OF STEEL SHEET DX53D+Z4citations

Places of action

Chart of shared publication
Cmorej, Denis
1 / 1 shared
Kaščák, Ľuboš
1 / 2 shared
Slota, Ján
1 / 4 shared
Spišák, Emil
1 / 8 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Cmorej, Denis
  • Kaščák, Ľuboš
  • Slota, Ján
  • Spišák, Emil
OrganizationsLocationPeople

article

NUMERICAL AND EXPERIMENTAL STUDIES ON CLINCH-BONDED HYBRID JOINING OF STEEL SHEET DX53D+Z

  • Cmorej, Denis
  • Varga, Ján
  • Kaščák, Ľuboš
  • Slota, Ján
  • Spišák, Emil
Abstract

<jats:p>The automotive industry is characterized by the fact that it uses an entire range of materials. These are materials with different mechanical properties, thicknesses, and even different combinations. A variety of joining methods, such as clinching, is used to join this range of materials. However, sometimes it is necessary to combine several methods of joining materials. The paper deals with the evaluation of the properties of joints, which are created by a combination of mechanical joining and adhesive bonding. Two types of adhesives were used: adhesive based on epoxy resin and adhesive based on acrylate polymers. Double-sided hot-dip galvanized steel sheets DX53D+Z with a thickness of 0.8 mm were used to join with this combination of joining techniques. Numerical simulation tools were used to assess the joinability of materials. The simulation results were verified by the results from the experiments of real test samples. Samples joined by the clinching method combined with epoxy resin adhesives achieved higher load-bearing values and no cracks or any other type of failures were observed in these joints.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • simulation
  • crack
  • steel
  • resin
  • joining