People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baranowski, Michał
Gdańsk University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Exciton Fine Structure in 2D Perovskites: The Out-of-Plane Excitonic Statecitations
- 2024Polaronic Mass Enhancement and Polaronic Excitons in Metal Halide Perovskitescitations
- 2022The Design of Cavity Resonators and Microwave Filters Applying Shape Deformation Techniques
- 2019Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2AgBiBr6citations
Places of action
Organizations | Location | People |
---|
document
The Design of Cavity Resonators and Microwave Filters Applying Shape Deformation Techniques
Abstract
This paper introduces shape deformation as a new approach to the computer-aided design (CAD) of high-frequency components. We show that geometry deformation opens up new design possibilities and offers additional degrees of freedom in the 3D modeling of microwave structures. Such design flexibility is highly desirable if the full potential of Additive Manufacturing (AM) is to be exploited in the fabrication of RF & microwave devices. The use of deformation techniques in the design of high-frequency components allows the attainment of improved electrical parameters, such as high-quality factors for cavity resonators and wide higher-order mode separation. In this work, shape deformation with radial basis functions (RBFs) is integrated with an electromagnetic field simulator based on the 3D finite-element method (FEM), allowing the semiautomated optimization of microwave components, such as cavity resonators and filters. The proposed strategy is used for the design of high Q-factor cavity resonators and of cavity bandpass filters with improved spurious mode separation. Designs of third-order and sixth-order cavity filters with complex geometry are experimentally verified using 3D-printed prototypes with selective laser melting (SLM) technology.