Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Selmi, Moez

  • Google
  • 1
  • 3
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Experimental and Modeling of Shear Mechanical Behavior of Soil Conditioned With Foaming Agent1citations

Places of action

Chart of shared publication
Jamei, Mehrez
1 / 1 shared
Dubujet, Philippe
1 / 2 shared
Kacem, Mariem
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Jamei, Mehrez
  • Dubujet, Philippe
  • Kacem, Mariem
OrganizationsLocationPeople

article

Experimental and Modeling of Shear Mechanical Behavior of Soil Conditioned With Foaming Agent

  • Jamei, Mehrez
  • Selmi, Moez
  • Dubujet, Philippe
  • Kacem, Mariem
Abstract

Chemical foam is being used more frequently with Earth Pressure Balance (EPB) shields to achieve underground works, which present a rising interest in the excavation technique. During tunneling with an Earth Pressure Balance shield in clayey soil, clogging of the clay occurs, leading to blocking the cutting head and clog then the shield chambers. Surfactants are commonly used as conditioning agents to reduce clay stickiness. This treatment leads to a change in the mechanical properties of conditioned soil. This paper aims tostudy the shear strength behavior of foam-conditioned soil basing on triaxial tests in the undrained consolidated conditions. Experimental results are modeled using the finite element code COMSOL Multiphysics with the aim of analyzing the effect of the percentage of foam on the shear strength behavior. The soil mixture made from 40% of kaolinite and 60% of sand was conditioned with a foaming agent based on anionic surfactant. Consolidated undrained triaxial tests have been performed in order to explain the effect of foam. Results show that foam reduces the shear stress thanks to their weak stiffness. Shear strength stress is affected by the percentage of the foam in the mixture before shearing by reduce the shear strength of the conditioned soil. Soil-foam mixture has been modeled as a medium containing spherical pore inclusions with a low stiffness compared to the stiffness of unconditioned soil. Stiffness of bubbles inclusions was identified using one of the known homogenization models for composite materials. Results show that the reduce shear stress strength is affected by the percentage of inclusions in the matrix. It confirms the friction angle of composite material decrease as function of the percentage of gas bubbles inclusion in the matrix.

Topics
  • impedance spectroscopy
  • pore
  • inclusion
  • strength
  • composite
  • homogenization
  • surfactant