Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Kaiwen

  • Google
  • 2
  • 31
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Direct linearly polarized electroluminescence from perovskite nanoplatelet superlattices31citations
  • 2024Synthesis of ternary titanium–niobium nitride nanoparticles by induction thermal plasmacitations

Places of action

Chart of shared publication
Tanaka, Manabu
1 / 10 shared
Hirose, Motonori
1 / 1 shared
Wang, Yirong
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Tanaka, Manabu
  • Hirose, Motonori
  • Wang, Yirong
OrganizationsLocationPeople

article

Synthesis of ternary titanium–niobium nitride nanoparticles by induction thermal plasma

  • Tanaka, Manabu
  • Hirose, Motonori
  • Wang, Yirong
  • Zhang, Kaiwen
Abstract

<jats:title>Abstract</jats:title><jats:p>High-purity ternary titanium–niobium nitride nanoparticles were prepared by an induction thermal plasma. Metallic Ti and Nb powders served as raw materials. Molar fractions of Nb/(Ti+Nb) were set at various levels including 0, 0.25, 0.5, 0.75, and 1. Ammonia was introduced from the bottom into the plasma equipment as a quench gas. Nanoparticles crystallized in a cubic rock salt structure in the crystallographic space group <jats:italic>Fm</jats:italic>-3<jats:italic>m</jats:italic>. All nanoparticles exhibited similar morphology. The average particle size across all samples is approximately 10–14 nm. Elements Ti, Nb, and N are almost uniformly distributed in the nanoparticles. Investigations into the formation mechanism were conducted by examining nucleation temperature and thermodynamic analysis. Ternary titanium–niobium nitride nanoparticles form rapidly through nucleation, condensation, and coagulation with a nitridation reaction. Induction thermal plasma proves to be a highly efficient method for synthesizing ternary titanium–niobium nitride nanoparticles.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • nitride
  • titanium
  • space group
  • niobium