Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Akaiwa, Kazuaki

  • Google
  • 1
  • 9
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Formation energy crossings in Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> quasibinary system: ordered structures and phase transitions in (Al <sub>x</sub> Ga<sub>1−x </sub>)<sub>2</sub>O<sub>3</sub>1citations

Places of action

Chart of shared publication
Kawazoe, Yoshiyuki
1 / 2 shared
Mizuseki, Hiroshi
1 / 1 shared
Takahashi, Isao
1 / 2 shared
Sarukura, Nobuhiko
1 / 2 shared
Tamiya, Eiichi
1 / 1 shared
Yamanoi, Kohei
1 / 1 shared
Empizo, Melvin John F.
1 / 1 shared
Yoshikawa, Akira
1 / 3 shared
Gueriba, Jessiel Siaron
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kawazoe, Yoshiyuki
  • Mizuseki, Hiroshi
  • Takahashi, Isao
  • Sarukura, Nobuhiko
  • Tamiya, Eiichi
  • Yamanoi, Kohei
  • Empizo, Melvin John F.
  • Yoshikawa, Akira
  • Gueriba, Jessiel Siaron
OrganizationsLocationPeople

article

Formation energy crossings in Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> quasibinary system: ordered structures and phase transitions in (Al <sub>x</sub> Ga<sub>1−x </sub>)<sub>2</sub>O<sub>3</sub>

  • Kawazoe, Yoshiyuki
  • Mizuseki, Hiroshi
  • Takahashi, Isao
  • Sarukura, Nobuhiko
  • Akaiwa, Kazuaki
  • Tamiya, Eiichi
  • Yamanoi, Kohei
  • Empizo, Melvin John F.
  • Yoshikawa, Akira
  • Gueriba, Jessiel Siaron
Abstract

<jats:title>Abstract</jats:title><jats:p>A quasibinary system of Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> offers a range of applications in wide bandgap semiconductor engineering. Different polymorphs and concentrations of (Al<jats:italic><jats:sub>x</jats:sub></jats:italic>Ga<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> manifest a variety of structural and electronic properties, paving the way for tunability of (Al<jats:italic><jats:sub>x</jats:sub></jats:italic>Ga<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> for specific functions. In this work, we investigate the energetics of alpha (<jats:italic>α</jats:italic>) and beta (<jats:italic>β</jats:italic>) polymorphs of Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> by considering all possible configurations in a conventional unit cell. Using density functional theory, we show that the formation energies of (Al<jats:italic><jats:sub>x</jats:sub></jats:italic>Ga<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> in <jats:italic>α</jats:italic> and <jats:italic>β</jats:italic> configurations start to coincide at 50% concentration (Al<jats:sub>0.5</jats:sub>Ga<jats:sub>0.5</jats:sub>)<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>. The corundum configuration then becomes more dominant (lower in energy) than its monoclinic counterpart at around 80% Al concentration. The lowest formation energy configurations for 50% concentration in both <jats:italic>α</jats:italic> and <jats:italic>β</jats:italic> polymorphs also manifest a preference towards an ordered phase. These show that the stability of Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>-Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and its phase transitions are significantly influenced by the relative arrangements of Ga and Al within the quasibinary semiconducting crystal.</jats:p>

Topics
  • density
  • theory
  • semiconductor
  • phase transition
  • density functional theory
  • ordered phase