People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gutiérrez, Rafael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Computational Design of the Electronic Response for Volatile Organic Compounds Interacting with Doped Graphene Substrates
- 2022Magnetoresistive Single-Molecule Junctionscitations
- 2021Predicting Neuropsychological Impairment in Relapsing Remitting Multiple Sclerosis: The Role of Clinical Measures, Treatment, and Neuropsychiatry Symptomscitations
- 2020Interactions of Long-Chain Polyamines with Silica Studied by Molecular Dynamics Simulations and Solid-State NMR Spectroscopycitations
- 2020Towards synthetic neural networkscitations
- 2019Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniquescitations
- 2019Direct Assembly and Metal-Ion Binding Properties of Oxytocin Monolayer on Gold Surfacescitations
- 2019Doping engineering of thermoelectric transport in BNC heteronanotubescitations
- 2019Thermal bridging of graphene nanosheets via covalent molecular junctionscitations
- 2018Chirality-dependent electron spin filtering by molecular monolayers of helicenescitations
- 2017In-Situ Stretching Patterned Graphene Nanoribbons in the Transmission Electron Microscopecitations
- 2015Switchable Negative Differential Resistance Induced by Quantum Interference Effects in Porphyrin-based Molecular Junctionscitations
- 2010Structural stability versus conformational sampling in biomolecular systems: Why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA?citations
- 2009Combined density functional theory and Landauer approach for hole transfer in DNA along classical molecular dynamics trajectoriescitations
- 2007Tuning the conductance of a molecular switchcitations
- 2003Conductance of a molecular junction mediated by unconventional metal-induced gap statescitations
Places of action
Organizations | Location | People |
---|
article
Towards synthetic neural networks
Abstract
<p>The enormous amount of data generated nowadays worldwide is increasingly triggering the search for unconventional and more efficient ways of processing and classifying information, eventually able to transcend the conventional von Neumann-Turing computational central dogma. It is, therefore, greatly appealing to draw inspiration from less conventional but computationally more powerful systems such as the neural architecture of the human brain. This neuromorphic route has the potential to become one of the most influential and long-lasting paradigms in the field of unconventional computing. Memristive and the recently proposed memfractive systems have been shown to display basic features of neural systems such as synaptic-like plasticity and memory features, so that they may offer a diverse playground to implement synaptic connections. In this review, we address various material-based strategies of implementing unconventional computing hardware: (i) electrochemical oscillators based on liquid metals and (ii) mem-devices exploiting Schottky barrier modulation in polycrystalline and disordered structures made of oxide or perovskite-type semiconductors. Both items (i) and (ii) build the two pillars of neuromimetic computing devices, which we will denote as synthetic neural networks. We expect that the current review will be of great interest for scientists aiming at bridging unconventional computing strategies with specific materials-based platforms.</p>