People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Popa, Mihai
Gheorghe Asachi Technical University of Iași
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Mechanical Properties and Wear Resistance of Biodegradable ZnMgY Alloycitations
- 2024Highlighting Free-Recovery and Work-Generating Shape Memory Effects at 80r-PET Thermoformed Cups
- 2021Influence of alloying elements on the thermal behavior of NiTi shape memory alloyscitations
- 2021On the Free Recovery Bending Shape Memory Effect in Powder Metallurgy FeMnSiCrNi
- 2021Structural Effects of Heat Treatment Holding-Time on Dynamic and Damping Behaviour of an Fe-28Mn-6Si-5Cr Shape Memory Alloy
- 2019Processing effects on tensile superelastic behaviour of Fe43.5Mn34Al15 ± XNi7.5∓X shape memory alloys
- 2019Processing effects on tensile superelastic behaviour of Fe<inf>43.5</inf>Mn<inf>34</inf>Al<inf>15 ± X</inf>Ni<inf>7.5∓X</inf> shape memory alloys
- 2019Accumulation of stress induced martensite in Fe<sub>43.5</sub>Mn<sub>34</sub>Al<sub>15±x</sub>Ni<sub>7.5∓</sub>X shape memory alloyscitations
Places of action
Organizations | Location | People |
---|
article
On the Free Recovery Bending Shape Memory Effect in Powder Metallurgy FeMnSiCrNi
Abstract
<jats:p>This paper presents the results of an original experimental study on the training capacity of a powder metallurgy (PM) FeMnSiCrNi shape memory alloy (SMA). The specimens were sintered under protective atmosphere from blended elemental powders, 50 vol.%. of alloy particles being mechanically alloyed. Lamellar specimens, hot rolled to 1 mm thickness, were bent against cylindrical calibres with five decreasing radii, to induce cold shapes with higher and higher deformation degree, as compared to the straight hot shape. During the training procedure, bent specimens were heated with a hot air gun, and developed free-recovery shape memory effect (SME) and partially deflected, by reducing their curvature. The first set of experiments involved fastening the specimens at one end, heating it and monitoring free end’s displacement by means of cinematographic analysis. Within the second set of experiments, both cold and hot shapes were recorded and digitalized and their chord’s length (b) and circle segment height (a) were measured and the radius was determined as R = a/2 + b2/8a for the cold (Rc) and hot shapes (Rh). Finally, the shape recovery degree was calculated for the nth calibre as Δrecn = (Rhn-Rrn)/(Rhn-1-Rrn) and the variation of Δrecn with calibre’s radius was discussed.
 </jats:p>