People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lenau, Torben Anker
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2020Fungal future: a review of mycelium biocomposites as an ecological alternative insulation materialcitations
- 2012Casting traceability with direct part marking using reconfigurable pin-type tooling based on paraffin–graphite actuatorscitations
- 2009Interactive Sample Book (ISB):An Inspirational Tool for Smart Textiles
- 2009Interactive Sample Book (ISB)
- 2008New and smart materials - why and how
Places of action
Organizations | Location | People |
---|
document
Fungal future: a review of mycelium biocomposites as an ecological alternative insulation material
Abstract
Reducing the use of non-renewable resources is a key strategy for transition to circular economy. Mycelium is the vegetative part of fungus which can cement particulate substrate and can be formed into any shape if grown in a mould. Mycelium biocomposites (MBs) are rapidly being seen as green alternative for many hydrocarbon-based products, including Expanded Polystyrene (EPS) used for insulation in the construction industry. This is largely due to its comparable acoustic/insulative properties, superior fire safety and minimal environmental impact. Furthermore, as MBs can utilize low cost readily available commercial waste products such as wheat husks as a composite substrate, a clear value chain upscaling can be envisioned. Throughout its linear lifecycle, EPS insulation pose numerus environmental issues, including high resource use and challenges in its end of life disposal. Even if disposed correctly it can take thousands of years to degrade, evidently making it extremely difficult to properly contain. This has resulted in bioaccumulation of toxic chemicals in food webs across the planet. Conversely, MBs are biodegradable and importantly can be used as raw material for the production of more MBs. When comparing life cycle assessment (LCA) and production, MBs are estimated to hold clear advantages in terms of reduced CO2 out put and costs. It is thus clear it holds the potential to become an ideal candidate for a “cradle to cradle” economy, in this sector. Despite these attributes, MB insulation still have evident disadvantages when compared to their hydrocarbon counterparts and could hinder its adoption on a commercial scale. These include higher density and issues with water uptake. Furthermore, there can be wide variability in material performance on the basis of which substrate composition fungal strain, incubation conditions and manufacturing techniques are used. This coupled with the relatively sparse research in this field makes full assessments and comparisons between studies more difficult. New design ...