Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grüner, Daniel

  • Google
  • 8
  • 56
  • 80

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodescitations
  • 2024Enabling High-Performance Hybrid Solid-State Batteries by Improving the Microstructure of Free-Standing LATP/LFP Composite Cathodes.3citations
  • 2024Phase-field determination of NaSICON materials in the quaternary system Na2O-P2O5-SiO2-ZrO2: II. Glass-ceramics and the phantom of excessive vacancy formation2citations
  • 2023Enabling metal substrates for garnet-based composite cathodes by laser sinteringcitations
  • 2020Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheets20citations
  • 2012Exit wave reconstruction from focal series of HRTEM images, single crystal XRD and total energy studies on Sb xWO 3+y (x ~ 0.11)8citations
  • 2012Exit wave reconstruction from focal series of HRTEM images, single crystal XRD and total energy studies on Sb xWO 3+y (x ~ 0.11)8citations
  • 2011Spark plasma sintering of nanocrystalline BaTiO3-powders: consolidation behavior and dielectric characteristics39citations

Places of action

Chart of shared publication
Schwaiger, Ruth
2 / 25 shared
Lin, Yu-Hsing
2 / 2 shared
Guillon, Olivier
4 / 26 shared
Odenwald, Philipp
2 / 2 shared
Malzbender, Jürgen
3 / 11 shared
Finsterbusch, Martin
3 / 12 shared
Gross, Jürgen Peter
2 / 2 shared
Lee, Changhee
2 / 2 shared
Fattakhova-Rohlfing, Dina
4 / 20 shared
Dashjav, Enkhtsetseg
4 / 6 shared
Scheld, Walter Sebastian
3 / 7 shared
Nguyen, Thi Tuyet Hanh
2 / 2 shared
Uhlenbruck, Sven
3 / 10 shared
Teng, Hsisheng
2 / 2 shared
Tietz, Frank
4 / 13 shared
Mahmoud, Abdelfattah
2 / 64 shared
Dellen, Christian
2 / 7 shared
Ihrig, Martin
3 / 5 shared
Hansen, Thomas C.
1 / 9 shared
Gerhards, Marie-Theres
1 / 1 shared
Klein, Felix
1 / 4 shared
Rohrer, Jochen
1 / 6 shared
Albe, Karsten
1 / 18 shared
Vedder, Christian
1 / 9 shared
Rosen, Melanie
1 / 2 shared
Hoff, Linda Charlotte
1 / 4 shared
Lobe, Sandra
1 / 5 shared
Seok, Ah-Ram
1 / 1 shared
Stollenwerk, Jochen
1 / 7 shared
Kraleva, Irina
1 / 5 shared
Roling, Bernhard
1 / 3 shared
Bermejo, Raúl
1 / 38 shared
Ma, Qianli
1 / 8 shared
Kaiser, Nico
1 / 2 shared
Gerhards, Marie Theres
1 / 1 shared
Spannenberger, Stefan
1 / 1 shared
Gellert, Michael
1 / 1 shared
Yan, Gang
1 / 1 shared
Kirkland, Angus
2 / 3 shared
Haigh, Sj
1 / 63 shared
Backer, Annick De
1 / 3 shared
Sundberg, Margareta
2 / 2 shared
Aert, Sandra Van
1 / 5 shared
Terasaki, Osamu
2 / 12 shared
Klingstedt, Miia
2 / 3 shared
Eriksson, Lars
2 / 4 shared
De Backer, Annick
1 / 5 shared
Van Aert, Sandra
1 / 18 shared
Haigh, Sarah
1 / 17 shared
Waser, Rainer
1 / 29 shared
Yoon, Songhak
1 / 16 shared
Pithan, Christian
1 / 6 shared
Iwaya, Shoichi
1 / 1 shared
Dornseiffer, Jürgen
1 / 1 shared
Shen, Zhijian
1 / 9 shared
Xiong, Yan
1 / 1 shared
Chart of publication period
2024
2023
2020
2012
2011

Co-Authors (by relevance)

  • Schwaiger, Ruth
  • Lin, Yu-Hsing
  • Guillon, Olivier
  • Odenwald, Philipp
  • Malzbender, Jürgen
  • Finsterbusch, Martin
  • Gross, Jürgen Peter
  • Lee, Changhee
  • Fattakhova-Rohlfing, Dina
  • Dashjav, Enkhtsetseg
  • Scheld, Walter Sebastian
  • Nguyen, Thi Tuyet Hanh
  • Uhlenbruck, Sven
  • Teng, Hsisheng
  • Tietz, Frank
  • Mahmoud, Abdelfattah
  • Dellen, Christian
  • Ihrig, Martin
  • Hansen, Thomas C.
  • Gerhards, Marie-Theres
  • Klein, Felix
  • Rohrer, Jochen
  • Albe, Karsten
  • Vedder, Christian
  • Rosen, Melanie
  • Hoff, Linda Charlotte
  • Lobe, Sandra
  • Seok, Ah-Ram
  • Stollenwerk, Jochen
  • Kraleva, Irina
  • Roling, Bernhard
  • Bermejo, Raúl
  • Ma, Qianli
  • Kaiser, Nico
  • Gerhards, Marie Theres
  • Spannenberger, Stefan
  • Gellert, Michael
  • Yan, Gang
  • Kirkland, Angus
  • Haigh, Sj
  • Backer, Annick De
  • Sundberg, Margareta
  • Aert, Sandra Van
  • Terasaki, Osamu
  • Klingstedt, Miia
  • Eriksson, Lars
  • De Backer, Annick
  • Van Aert, Sandra
  • Haigh, Sarah
  • Waser, Rainer
  • Yoon, Songhak
  • Pithan, Christian
  • Iwaya, Shoichi
  • Dornseiffer, Jürgen
  • Shen, Zhijian
  • Xiong, Yan
OrganizationsLocationPeople

article

Phase-field determination of NaSICON materials in the quaternary system Na2O-P2O5-SiO2-ZrO2: II. Glass-ceramics and the phantom of excessive vacancy formation

  • Fattakhova-Rohlfing, Dina
  • Dashjav, Enkhtsetseg
  • Hansen, Thomas C.
  • Gerhards, Marie-Theres
  • Klein, Felix
  • Rohrer, Jochen
  • Tietz, Frank
  • Grüner, Daniel
  • Albe, Karsten
Abstract

This work focuses on a very narrow region in the quaternary system Na2O-P2O5-SiO2-ZrO2 to explore the occasionally proposed deficiency in zirconium and oxygen content of Na+ super-ionic conductor (NaSICON) materials. In addition, this region is known for the formation of glass-ceramics, but a systematic study of such materials has not been carried out yet. For this purpose, 2 series of compositions were defined and synthesized: Na3.4Zr2-3x/4Si2.4-x/4P0.6+x/4O12-11x/8 and Na3.4Zr2-3x/4Si2.4+x/4P0.6+1.5x/4O12-x/16. They only differ in the silicate and phosphate content. In the first series the molar content is constant, nSi + nP = 3. The latter series allows an excess of the 2 cations to meet the composition Na3.1Zr1.55Si2.3P0.7O11 or alternatively re-written as Na3.4Zr1.7Si2.52P0.77Ol2, which was formerly regarded as a superior material to the frequently reported composition Na3Zr2Si2POl2.Several characterization techniques were applied to better understand the relationships between phase formation, processing, and properties of the obtained glass ceramics in the context of the quasi-quaternary phase diagram. The investigations gave clear evidence that a glass phase is progressively formed with increasing x. Therefore, compounds with x > 0.2 have to be regarded as glass-ceramic composites. The resulting NaSICON materials revealed a very limited Zr deficiency with charge compensation by Na ions and a non-detectable amount of oxygen vacancies verified by neutron scattering and atomistic simulations.Hence, this work is the first systematic investigation of pretended Zr-deficient NaSICON materials, which clearly show the chemistry of a 2-phase region. The 2 investigated series are directed toward a region that is orthogonal to the series Na3Zr3-ySi2PyO11.5+y/2 reported in the first part of this series of publications.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • simulation
  • Oxygen
  • glass
  • glass
  • zirconium
  • composite
  • ceramic
  • phase diagram
  • oxygen content
  • vacancy
  • neutron scattering