Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lemonis, Andreas

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Femtosecond-Laser-Induced All-Silicon Dielectric Metasurfaces Assisted by Wet Chemical Etching4citations

Places of action

Chart of shared publication
Sakellari, Ioanna
1 / 1 shared
Droulias, Sotiris
1 / 5 shared
Stratakis, Emmanuel I.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sakellari, Ioanna
  • Droulias, Sotiris
  • Stratakis, Emmanuel I.
OrganizationsLocationPeople

article

Femtosecond-Laser-Induced All-Silicon Dielectric Metasurfaces Assisted by Wet Chemical Etching

  • Sakellari, Ioanna
  • Droulias, Sotiris
  • Lemonis, Andreas
  • Stratakis, Emmanuel I.
Abstract

<jats:p>All-dielectric metasurfaces offer low material loss and strong field localization and are, therefore, well suited for ultrathin and compact optical devices for electomagnetic wave manipulation at the nanoscale. All-silicon dielectric metasurfaces, in particular, may additionally offer the desired compatibility with complementary metal-oxide semiconductor technology and, hence, are ideal candidates for large-scale monolithic integration on a photonic chip. However, in conventional silicon microfabrication approaches, the combination of mask photolithography with reactive ion etching usually involves expensive masks and multiple preprocessing stages leading to increased cost and fabrication times. In this work, a single-step lithographical approach is proposed for the realization of all-silicon dielectric resonant metasurfaces that involves femtosecond laser processing of silicon below ablation threshold in combination with subsequent wet chemical etching. The method exploits the different etching rate between laser-modified and untreated regions, enabling large-area fabrication of patterned silicon surfaces in a facile and cost-efficient manufacturing approach. It is presented how two-dimensional silicon micro/nanostructures with controllable features, such as nanocones, can be effectively generated and, as a proof of concept, an all-silicon dielectric metasurface device supporting antiferromagnetic order is experimentally demonstrated.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • semiconductor
  • Silicon
  • two-dimensional
  • plasma etching