Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bruns, Mathis

  • Google
  • 3
  • 13
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Characterization of the Viscoelastic Properties of Yarn Materials:1citations
  • 2022Integrated Temperature and Position Sensors in a Shape-Memory Driven Soft Actuator for Closed-Loop Control9citations
  • 2021Development of an Elastic, Electrically Conductive Coating for TPU Filaments3citations

Places of action

Chart of shared publication
Cherif, Chokri
3 / 112 shared
Beitelschmidt, Michael
1 / 1 shared
Kopelmann, Karl
1 / 2 shared
Nocke, Andreas
3 / 34 shared
Cuaran, Carlos Alberto Gomez
1 / 1 shared
Röbenack, Klaus
1 / 7 shared
Mersch, Johannes
1 / 9 shared
Keshtkar, Najmeh
1 / 2 shared
Grellmann, Henriette
1 / 3 shared
Gerlach, Gerald
1 / 12 shared
Lohse, Felix Michael
1 / 1 shared
Kruppke, Iris
1 / 12 shared
Probst, Henriette
1 / 3 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Cherif, Chokri
  • Beitelschmidt, Michael
  • Kopelmann, Karl
  • Nocke, Andreas
  • Cuaran, Carlos Alberto Gomez
  • Röbenack, Klaus
  • Mersch, Johannes
  • Keshtkar, Najmeh
  • Grellmann, Henriette
  • Gerlach, Gerald
  • Lohse, Felix Michael
  • Kruppke, Iris
  • Probst, Henriette
OrganizationsLocationPeople

article

Characterization of the Viscoelastic Properties of Yarn Materials:

  • Bruns, Mathis
  • Cherif, Chokri
  • Beitelschmidt, Michael
  • Kopelmann, Karl
  • Nocke, Andreas
Abstract

Warp knitting is a highly productive textile manufacturing process and method of choice for many products. With the current generation of machines running up to 4400 min−1, dynamics become a limit for the production. Resonance effects of yarn-guiding elements and oscillations of the yarn lead to load peaks, resulting in breakage or mismatches. This limits material choice to highly elastic materials for high speeds, which compensate for these effects through their intrinsic properties. To allow the processing of high-performance fibers, a better understanding of the viscoelastic yarn behavior is necessary. The present paper shows a method to achieve this in longitudinal yarn direction using a dynamic mechanical analysis approach. Samples of high tenacity polyester and aramid are investigated. The test setup resembles the warp knitting process in terms of similar geometrical conditions, pre-loads, and occurring frequencies. By recording the mechanical load resulting from an applied strain, it is possible to calculate the phase shift and the dissipation factor, which is a key indicator for the damping behavior. It shows that the dissipation factor rises with rising frequency. The results allow for a simulation of the warp knitting process, including a detailed yarn model and representation of stitch-formation process.

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • dynamic mechanical analysis
  • dissipation factor