Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kalthoff, Matthias

  • Google
  • 2
  • 4
  • 9

RWTH Aachen University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Extruded thin-walled textile reinforced concrete components with flexible shapecitations
  • 2022Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concrete9citations

Places of action

Chart of shared publication
Scheurer, Martin
1 / 3 shared
Gries, Thomas
1 / 27 shared
Matschei, Thomas
1 / 2 shared
Raupach, Michael
1 / 18 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Scheurer, Martin
  • Gries, Thomas
  • Matschei, Thomas
  • Raupach, Michael
OrganizationsLocationPeople

article

Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concrete

  • Scheurer, Martin
  • Gries, Thomas
  • Matschei, Thomas
  • Kalthoff, Matthias
  • Raupach, Michael
Abstract

<jats:p>In carbon-reinforced concrete, the commonly used steel reinforcement is replaced with carbon fiber reinforcement textiles, enabling thin-walled elements by using new construction principles. The high drapability of textiles offers design opportunities for new concrete structures. However, commonly utilized textiles are impregnated with comparatively stiff polymeric materials to ensure load transmission into the textile, limiting drapability. In this paper, a new approach is analyzed: the use of pre-impregnated textiles cured within the concrete matrix. This enables the production of filigree, highly curved components with high mechanical performance, as needed for novel additive manufacturing methods. In the presented trials, rovings were successfully impregnated with potential impregnation materials, cured within the concrete, and compared to rovings cured outside of the concrete. The analysis of the curing process using a rolling ball test determines that all materials have to be placed in concrete 4 to 24 h after impregnation. The results of uniaxial tensile tests on reinforced concrete show that maximum load is increased by up to 87% for rovings cured within concrete (compared to non-impregnated rovings). This load increase was higher for rovings cured outside of concrete (up to 185%), indicating that the concrete environment interferes with the curing process, requiring further analysis and adaptation.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • steel
  • additive manufacturing
  • curing