Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Okunkova, Anna

  • Google
  • 6
  • 8
  • 184

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Electrical Discharge Machining Non-Conductive Ceramics: Combination of Materials33citations
  • 2018Power Density Distribution for Laser Additive Manufacturing (SLM): Potential, Fundamentals and Advanced Applications74citations
  • 2018Electro Conductive Alumina Nanocomposites From Different Alumina-Carbides Mixtures3citations
  • 2018On Adaptive Control for Electrical Discharge Machining Using Vibroacoustic Emission26citations
  • 2018The Effect of TiC Additive on Mechanical and Electrical Properties of Al2O3 Ceramic45citations
  • 2016Electro Conductive Alumina Nanocomposites From Different Alumina-Carbides Mixtures3citations

Places of action

Chart of shared publication
Fernández, Adolfo
2 / 45 shared
Gotor Martínez, Francisco José
1 / 18 shared
Torrecillas, Ramón
2 / 44 shared
Díaz, Luis A.
2 / 22 shared
Peretyagin, Pavel
2 / 4 shared
Solís, Washington
1 / 2 shared
Solis, Washington
1 / 1 shared
Gotor, F. J.
1 / 15 shared
Chart of publication period
2020
2018
2016

Co-Authors (by relevance)

  • Fernández, Adolfo
  • Gotor Martínez, Francisco José
  • Torrecillas, Ramón
  • Díaz, Luis A.
  • Peretyagin, Pavel
  • Solís, Washington
  • Solis, Washington
  • Gotor, F. J.
OrganizationsLocationPeople

article

Electrical Discharge Machining Non-Conductive Ceramics: Combination of Materials

  • Okunkova, Anna
Abstract

<jats:p>One of the promising processing methods for non-conductive structural and functional ceramics based on ZrO2, Al2O3, and Si3N4 systems is electrical discharge machining with the assistance of an auxiliary electrode that can be presented in the form of conductive films with a thickness up to 4–10 µm or nanoparticles - granules, tubes, platelets, multidimensional particles added in the working zone as a free poured powder the proper concentration of which can be provided by ultrasound emission or by dielectric flows or as conductive additives in the structure of nanocomposites. However, the described experimental approaches did not reach the production market and industry. It is related mostly to the chaotic development of the knowledge and non-systematized data in the field when researchers often cannot ground their choice of the material for auxiliary electrodes, assisting powders, or nano additives or they cannot explain the nature of processes that were observed in the working tank during experiments when their results are not correlated to the measured specific electrical conductivity of the electrodes, particles, ceramic workpieces or nanocomposites but depends on something else. The proposed review includes data on the main electrophysical and chemical properties of the components in the presence of heat when the temperature in the interelectrode gap reaches 10,000 °C, and the systematization of data on ceramic pressing methods, including spark plasma sintering, the chemical reactions that occur in the interelectrode gap during sublimation of primary (brass and copper) and auxiliary electrodes made of transition metals Ti, Cr, Co, and carbon, auxiliary electrodes made of metals with low melting point Zn, Ag, Au, Al, assisting powder of oxide ceramics TiO2, CeO2, SnO2, ITO, conductive additives Cu, W, TiC, WC, and components of Al2O3 and Zr2O workpieces in interaction with the dielectric fluid - water and oil/kerosene medium.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • experiment
  • copper
  • electrical conductivity
  • sintering
  • brass
  • oxide ceramic