Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barlow, Euan

  • Google
  • 2
  • 4
  • 7

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017A weak-inertia mathematical model of bubble growth in a polymer foam3citations
  • 2016Investigating the performance of a fractal ultrasonic transducer under varying system conditions4citations

Places of action

Chart of shared publication
Bradley, Aoibhinn M.
1 / 1 shared
Mulholland, Anthony J.
2 / 30 shared
Torres-Sanchez, Carmen
1 / 2 shared
Algehyne, Ebrahem A.
1 / 4 shared
Chart of publication period
2017
2016

Co-Authors (by relevance)

  • Bradley, Aoibhinn M.
  • Mulholland, Anthony J.
  • Torres-Sanchez, Carmen
  • Algehyne, Ebrahem A.
OrganizationsLocationPeople

article

Investigating the performance of a fractal ultrasonic transducer under varying system conditions

  • Barlow, Euan
  • Algehyne, Ebrahem A.
  • Mulholland, Anthony J.
Abstract

As applications become more widespread there is an ever-increasing need to improve the accuracy of ultrasound transducers, in order to detect at much finer resolutions. In comparison with naturally occurring ultrasound systems the man-made systems have much poorer accuracy, and the scope for improvement has somewhat plateaued as existing transducer designs have been iteratively improved over many years. The desire to bridge the gap between the man-made and naturally occurring systems has led to recent investigation of transducers with a more complex geometry, in order to replicate the complex structure of the natural systems. These transducers have structures representing fractal geometries, and these have been shown to be capable of delivering improved performance in comparison with standard transducer designs. This paper undertakes a detailed investigation of the comparative performance of a standard transducer design, and a transducer based on a fractal geometry. By considering how these performances vary with respect to the key system parameters, a robust assessment of the fractal transducer performance is provided.

Topics
  • impedance spectroscopy
  • ultrasonic