Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nikjoo, Dariush

  • Google
  • 3
  • 9
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Poly (vinylidene difluoride) polymer in 1-ethyl-3-methylimidazolium acetate and acetic acid containing solvents : Tunable and recoverable solvent media to induce crystalline phase transition and porosity2citations
  • 2022Poly (Vinylidene Difluoride) Polymer in 1-Ethyl-3-methylimidazolium Acetate and Acetic Acid Containing Solvents: Tunable and Recoverable Solvent Media to Induce Crystalline Phase Transition and Porosity2citations
  • 2017Experimental Studies and Modeling of the Drying Kinetics of Multicomponent Polymer Films42citations

Places of action

Chart of shared publication
Irgum, Knut
2 / 2 shared
Khokarale, Santosh G.
1 / 1 shared
Mikkola, Jyri-Pekka
2 / 10 shared
Dinh, Van Minh
2 / 4 shared
Sundman, Ola
2 / 3 shared
Jablonski, Piotr
2 / 3 shared
Khokarale, Santosh Govind
1 / 2 shared
Vuddanda, Parameswara Rao
1 / 5 shared
Velaga, Sitaram P.
1 / 2 shared
Chart of publication period
2022
2017

Co-Authors (by relevance)

  • Irgum, Knut
  • Khokarale, Santosh G.
  • Mikkola, Jyri-Pekka
  • Dinh, Van Minh
  • Sundman, Ola
  • Jablonski, Piotr
  • Khokarale, Santosh Govind
  • Vuddanda, Parameswara Rao
  • Velaga, Sitaram P.
OrganizationsLocationPeople

article

Poly (Vinylidene Difluoride) Polymer in 1-Ethyl-3-methylimidazolium Acetate and Acetic Acid Containing Solvents: Tunable and Recoverable Solvent Media to Induce Crystalline Phase Transition and Porosity

  • Irgum, Knut
  • Khokarale, Santosh Govind
  • Mikkola, Jyri-Pekka
  • Dinh, Van Minh
  • Sundman, Ola
  • Jablonski, Piotr
  • Nikjoo, Dariush
Abstract

In this report, 1-ethyl-3-methylimidazolium acetate, [EMIM][AcO] ionic liquid (IL) and acetic acid (AA) comprised solvents were used for the thermal treatment of poly (vinylidene difluoride), PVDF. Here, besides the various combinations of IL and AA in solvents, the pure IL and AA were also applied as a solvent upon thermal treatments. The samples obtained after the treatment were analysed for structural and crystalline phase changes, porosity, and molecular weight distribution with various analytical techniques. The Kamlet-Taft parameters measurement of the IL and AA containing solvents with different solvatochromic dyes was also performed to examine their solvent properties and correlate with the properties of the treated PVDF materials. The treatment of PVDF with pure IL results in the formation of highly carbonaceous material due to extensive dehydroflurination (DHF) as well as possibly successive cross-linking in the polymer chains. Upon IL and AA combined solvent treatment, the neat PVDF which composed of both α- and β crystalline phases was transformed to porous and β-phase rich material whereas in case of pure AA the non-porous and pure α-phase polymeric entity was obtained. A combined mixture of IL and AA resulted in a limited the DHF process and subsequent cross-linking in the polymer chains of PVDF allowed the formation of a porous material. It was observed that the porosity of the thermally treated materials was steadily decreasing with increase in the amount of AA in solvents composition and solvent with an AA:IL mole ratio of 2:1 resulted in a PVDF material with the highest porosity amongst the applied solvents. A recovery method for the IL and AA combined solvent after the thermal treatment of PVDF was also established. Hence, with varying the type of solvents in terms of composition, the highly carbonaceous materials as well as materials with different porosities as well as crystalline phases can be obtained. Most importantly here, we introduced new IL and AA containing recoverable solvents for ...

Topics
  • porous
  • polymer
  • crystalline phase
  • phase transition
  • porosity
  • molecular weight