Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cruz, Clarissa

  • Google
  • 2
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Biodegradable Zn−1wt.%Mg(−0.5wt.%Mn) Alloys: Influence of Solidification Microstructure on Their Corrosion Behavior2citations
  • 2023The Influence of Interfacial Thermal Conductance on the Tensile Strength of a Sn-Mg Solder Alloycitations

Places of action

Chart of shared publication
Brito, Crystopher
1 / 4 shared
Barros, André
2 / 6 shared
Vida, Talita
1 / 1 shared
Soares, Thiago
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Brito, Crystopher
  • Barros, André
  • Vida, Talita
  • Soares, Thiago
OrganizationsLocationPeople

article

Biodegradable Zn−1wt.%Mg(−0.5wt.%Mn) Alloys: Influence of Solidification Microstructure on Their Corrosion Behavior

  • Brito, Crystopher
  • Barros, André
  • Cruz, Clarissa
  • Vida, Talita
Abstract

<jats:p>The development of biodegradable Zn-based alloys for implants that effectively mimic the functionality of native bone throughout the healing process is a multifaceted challenge; this is particularly evident in the task of achieving appropriate corrosion rates. This work explores the incorporation of 0.5wt.%Mn into a Zn−1wt.%Mg alloy, with focus on the relationship between corrosion behavior and microstructure. Electrochemical corrosion tests were carried out in a 0.06 M NaCl solution using as-solidified samples with two distinct microstructural length scales. Mn addition was found to induce significant electrochemical active behavior. Localized corrosion was predominant in interdendritic regions, with the ternary alloy exhibiting a higher susceptibility. For both alloys, the coarsening of the microstructure promoted a slight inclination to accelerate the corrosion rates in both biodegradable Zn alloys. The corrosion rate showed an increase of about nine-times with Mn addition for coarser eutectic spacings, while for finer ones, the increase was by about 22 times.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • corrosion
  • susceptibility
  • solidification