People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grytsenko, Kostyantyn
V.E. Lashkaryov Institute of Semiconductor Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Electron‐Assisted Deposition‐Polymerization in Vacuum of Polymethines with Terminal Allyl Groupcitations
- 2021Fluoropolymer Film Formation by Electron Activated Vacuum Depositioncitations
- 2012Evaluation of the Mechanism of the Gold Cluster Growth during Heating of the Composite Gold-Polytetrafluoroethylene Thin Filmcitations
- 2009Influence of interparticle interaction on melting of gold nanoparticles in Au/polytetrafluoroethylene nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Fluoropolymer Film Formation by Electron Activated Vacuum Deposition
Abstract
Polytetrafluoroethylene (PTFE), polyhexafluoropropylene (PHFP) and polychlorotrifluoroethylene (PCTFE) were heated to their decomposition temperature in a high vacuum. The emitted fragments passed an electron cloud, condensed on a substrate and formed fluoropolymer film. Growth rate of PTFE and PHFP films increased up to a factor five in the presence of the electron cloud. Mass spectrometry revealed changes in the mass spectra of fragments generated by thermal decomposition only and formed under electron activation. The observed changes were different for each fluoropolymer. Infrared spectroscopy (IRS) showed that the structure of the films was close to the structure of the bulk polymers. Atomic force microscopy (AFM) has revealed different morphologies of PTFE, PHFP and PCTFE films, suggesting a Volmer–Weber growth mechanism for PTFE and PHFP but a Frank-van der Merwe one for PCTFE. All films were smooth at nanoscale and transparent from ultraviolet to near-infrared region. Additional radio frequency (RF) plasma ignited in the emitted fragments at a low pressure increased mechanical characteristics of the films without losing their optical transparency and smoothness.