People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cattelan, Mattia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021An investigation into the surface termination and near-surface bulk doping of oxygen-terminated diamond with lithium at various annealing temperaturescitations
- 2019Anodization study of epitaxial graphenecitations
- 2019Surface Investigation on Electrochemically Deposited Lead on Goldcitations
- 2019Anodization study of epitaxial graphene : insights on the oxygen evolution reaction of graphitic materialscitations
- 2019Anodization study of epitaxial graphene:insights on the oxygen evolution reaction of graphitic materialscitations
- 2018Growth and electronic structure of 2D hexagonal nanosheets on a corrugated rectangular substratecitations
- 2018A perspective on the application of spatially resolved ARPES for 2D materialscitations
- 2018Impact of Sb and Na Doping on the Surface Electronic Landscape of Cu 2 ZnSnS 4 Thin Filmscitations
- 2018Impact of Sb and Na Doping on the Surface Electronic Landscape of Cu2ZnSnS4 Thin Filmscitations
- 2018Surface structure of few layer graphenecitations
- 2018Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructurescitations
- 2017Indium selenide: An insight into electronic band structure and surface excitationscitations
- 2015Fast One-Pot Synthesis of MoS2/Crumpled Graphene p-n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Productioncitations
Places of action
Organizations | Location | People |
---|
article
Surface Investigation on Electrochemically Deposited Lead on Gold
Abstract
Electrodeposition of Pb on Au has been of interest for the variety of surface phenomena such as the UnderPotential Deposition (UPD) and surface alloying. Here, we examined the interface between the electrodeposited Pb film on Au, using surface sensitive techniques such as X-ray Photoelectron Spectroscopy (XPS), Ultraviolet Photoelectron Spectroscopy (UPS), Energy-Filtered Photoemission Electron Microscopy (EF-PEEM) and Work Function (WF) mapping. The initially electrodeposited Pb overlayer (~4 ML equivalent thickness) was transferred from the electrochemical cell to the UHV system. The deposited Pb layer was subjected to Argon sputtering cycles to remove oxide formed due to air exposure and gradually thinned down to a monolayer level. Surface science acquisitions showed the existence of a mixed oxide/metallic Pb overlayer at the monolayer level that transformed to a metallic Pb upon high temperature annealing (380 °C for 1 h) and measured changes of the electronic interaction that can be explained by Pb/Au surface alloy formation. The results show the electronic interaction between metallic Pb and Au is different from the interaction of Au with the PbO and Pb/PbO mixed layer; the oxide interface is less strained so the surface stress driven mixing between Au is not favored. The work illustrates applications of highly surface sensitive methods in the characterization of the surface alloy systems that can be extended to other complex and ultrathin mixed-metallic systems (designed or spontaneously formed)