Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Butt, Faheem

  • Google
  • 2
  • 9
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Influence of Bentonite and Polypropylene Fibers on Geopolymer Concrete9citations
  • 2014Dual-band tunable negative refractive index metamaterial with F-Shape structure15citations

Places of action

Chart of shared publication
Waqas, Rana Muhammad
1 / 1 shared
Alsuhaibani, Eyad
1 / 2 shared
Alkharisi, Mohammed K.
1 / 2 shared
Zaman, Shahid
1 / 1 shared
Jin, Hai-Bo
1 / 1 shared
Rizwan, Muhammad
1 / 6 shared
Hou, Zhi-Ling
1 / 1 shared
Ali, Zulfiqar
1 / 8 shared
Li, Jing-Bo
1 / 1 shared
Chart of publication period
2024
2014

Co-Authors (by relevance)

  • Waqas, Rana Muhammad
  • Alsuhaibani, Eyad
  • Alkharisi, Mohammed K.
  • Zaman, Shahid
  • Jin, Hai-Bo
  • Rizwan, Muhammad
  • Hou, Zhi-Ling
  • Ali, Zulfiqar
  • Li, Jing-Bo
OrganizationsLocationPeople

article

Influence of Bentonite and Polypropylene Fibers on Geopolymer Concrete

  • Waqas, Rana Muhammad
  • Alsuhaibani, Eyad
  • Butt, Faheem
  • Alkharisi, Mohammed K.
  • Zaman, Shahid
Abstract

<jats:p>Bentonite is one of the SiO2-rich pozzolanic clay types that has been enormously employed as a cost-effective and eco-friendly supplementary cementitious material in ordinary Portland cement (OPC) concrete. However, the use of bentonite in geopolymer concrete (GPC) has not been explored very widely. Further, the research available on the effect of utilizing treated bentonite in GPC is limited. The practical application of GPC is also very limited due to its significant shrinkage and high brittleness compared to OPC concrete. There are several studies available that have highlighted the use of polypropylene fibers (PPF) in improving the mechanical properties of GPC by reducing drying shrinkage and enhancing ductility. However, the effect of PPF on the durability properties of GPC needs to be addressed. Further, the effect of the combined integration of bentonite and PPF on the mechanical and durability properties of GPC has not been reported yet. The aim of this study is, therefore, to investigate the individual and combined effect of bentonite and PPF on the workability, mechanical properties, and durability of fly ash (FA)-based GPC. Bentonite replaced 10% of FA, and PPF was added at varying proportions (0.5%, 0.75%, and 1%) for raw and treated bentonite. Slump test was used to assess workability, while compressive, tensile, and flexural tests were utilized to evaluate the mechanical properties. Water absorption, acid attack, and abrasion resistance tests were used to evaluate durability. The results showed that bentonite and PPF significantly enhance mechanical properties, especially when combined with treated bentonite, with the highest improvement observed for mixtures with 1% PPF. The compressive strength was improved by an extent of 10% and 18% for raw bentonite-GPC and treated bentonite-GPC, respectively, compared to the control mix without bentonite. The durability test results revealed that water absorption of raw and treated bentonite-GPC mixtures at the age of 90 days was decreased by 16% and 21%, respectively, compared to the control mix (without bentonite). The mass loss of raw and treated bentonite-GPC mixtures in sulphuric acid solution was 5% and 10% lower, respectively, than the control mix (without bentonite). The mass loss of raw and treated bentonite-GPC mixtures in abrasion resistance tests was 6% and 12% lower, respectively, than the control mix (without bentonite). For durability performance, mixtures with 0.5% PPF perform the best, while higher PPF contents negatively impact the GPC durability.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • cement
  • bending flexural test
  • durability
  • ductility
  • drying