Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Menges, Achim

  • Google
  • 7
  • 29
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Slack Pack: Fabrication System for the Dual Robotic Winding of Spatial Fiber Structures2citations
  • 2024LivMatS Pavilion1citations
  • 2024Toward reciprocal feedback between computational design, engineering, and fabrication to co-design coreless filament-wound structures6citations
  • 2023Data processing, analysis, and evaluation methods for co-design of coreless filament-wound building systems7citations
  • 2023Extension of Computational Co-Design Methods for Modular, Prefabricated Composite Building Components Using Bio-Based Material Systems6citations
  • 2023Extension of computational co-design methods for modular, prefabricated composite building components using bio-based material systemscitations
  • 2020Physically distributed multi-robot coordination and collaboration in construction20citations

Places of action

Chart of shared publication
Estrada, Rebeca Duque
1 / 2 shared
Chen, Peng-An
1 / 1 shared
He, Mengxi
1 / 1 shared
Zechmeister, Christoph
6 / 7 shared
Hildebrandt, Harrison
1 / 1 shared
Knippers, Jan
5 / 15 shared
Rinderspacher, Katja
1 / 1 shared
Stark, Tim
1 / 1 shared
Dörstelmann, Moritz
1 / 4 shared
Dambrosio, Niccolo
3 / 3 shared
Pérez, Marta Gil
4 / 11 shared
Middendorf, Peter
2 / 21 shared
Bischoff, Manfred
2 / 4 shared
Mindermann, Pascal
2 / 10 shared
Weiskopf, Daniel
1 / 1 shared
Yang, Xiliu
1 / 1 shared
Abdelaal, Moataz
1 / 1 shared
Guo, Yanan
2 / 4 shared
Gresser, Götz Theodor
2 / 3 shared
Schwieger, Volker
2 / 2 shared
Hügle, Sebastian
2 / 2 shared
Forster, David
2 / 3 shared
Kannenberg, Fabian
2 / 2 shared
Balangé, Laura
2 / 2 shared
Gil Pérez, Marta
1 / 2 shared
Prado, Marshall
1 / 1 shared
Felbrich, Benjamin
1 / 1 shared
Tahanzadeh, Behrooz
1 / 1 shared
Vasey, Lauren
1 / 1 shared
Chart of publication period
2024
2023
2020

Co-Authors (by relevance)

  • Estrada, Rebeca Duque
  • Chen, Peng-An
  • He, Mengxi
  • Zechmeister, Christoph
  • Hildebrandt, Harrison
  • Knippers, Jan
  • Rinderspacher, Katja
  • Stark, Tim
  • Dörstelmann, Moritz
  • Dambrosio, Niccolo
  • Pérez, Marta Gil
  • Middendorf, Peter
  • Bischoff, Manfred
  • Mindermann, Pascal
  • Weiskopf, Daniel
  • Yang, Xiliu
  • Abdelaal, Moataz
  • Guo, Yanan
  • Gresser, Götz Theodor
  • Schwieger, Volker
  • Hügle, Sebastian
  • Forster, David
  • Kannenberg, Fabian
  • Balangé, Laura
  • Gil Pérez, Marta
  • Prado, Marshall
  • Felbrich, Benjamin
  • Tahanzadeh, Behrooz
  • Vasey, Lauren
OrganizationsLocationPeople

article

Extension of Computational Co-Design Methods for Modular, Prefabricated Composite Building Components Using Bio-Based Material Systems

  • Zechmeister, Christoph
  • Knippers, Jan
  • Menges, Achim
  • Dambrosio, Niccolo
  • Pérez, Marta Gil
Abstract

<p>Robotic coreless filament winding using alternative material systems based on natural fibers and bio-based resin systems offers possible solutions to the productivity and sustainability challenges of the building and construction sector. Their application in modular, prefabricated structures allows for material-efficient and fast production under tightly controlled conditions leading to high-quality building parts with minimal production waste. Plant fibers made of flax or hemp have high stiffness and strength values and their production consumes less non-renewable energy than glass or carbon fibers. However, the introduction of natural material systems increases uncertainties in structural performance and fabrication parameters. The development process of coreless wound composite parts must thus be approached from the bottom up, treating the material system as an integral part of design and evaluation. Existing design and fabrication methods, as well as equipment, are adjusted to emphasize material aspects throughout the development, increasing the importance of material characterization and scalability evaluation. The reciprocity of material characterization and the fabrication process is highlighted and contributes to a non-linear, cyclical workflow. The implementation of extensions and adaptations are showcased in the development of the livMatS pavilion, a first attempt at coreless filament winding using natural material systems in architecture.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • glass
  • glass
  • laser emission spectroscopy
  • strength
  • composite
  • resin