Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Olabimtan, Stephen Babajide

  • Google
  • 2
  • 4
  • 16

Cyprus International University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Effect of Biochar and Sewage Sludge Ash as Partial Replacement for Cement in Cementitious Composites: Mechanical, and Durability Properties9citations
  • 2023The Implementation of a Binary Blend of Waste Glass Powder and Coal Bottom Ash as a Partial Cement Replacement toward More Sustainable Mortar Production7citations

Places of action

Chart of shared publication
Pekrıoglu Balkıs, Ayse
1 / 1 shared
Oluwole, Babatunde Olufunso
1 / 1 shared
Rabiu, Balikis
1 / 1 shared
Mosaberpanah, Mohammad Ali
2 / 3 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Pekrıoglu Balkıs, Ayse
  • Oluwole, Babatunde Olufunso
  • Rabiu, Balikis
  • Mosaberpanah, Mohammad Ali
OrganizationsLocationPeople

document

The Implementation of a Binary Blend of Waste Glass Powder and Coal Bottom Ash as a Partial Cement Replacement toward More Sustainable Mortar Production

  • Olabimtan, Stephen Babajide
  • Mosaberpanah, Mohammad Ali
Abstract

One way the sustainability and efficiency of concrete production can be improved is by incorporating waste by-products into the mix. This can help reduce the use of natural resources, such as river sand, and prevent the pollution of valuable land. Two specific examples of waste by-products that can be used in the concrete industry are waste glass powder and coal bottom ash. This study presents an experimental investigation that analyzes the influence of adding glass powder and waste bottom ash from 0% to 20% with a 5% interval to produce high-performance mortar for rheological, mechanical, and durability properties cured under different conditions (wet and dry) and temperatures (20 °C), and at several curative processes at 7 and 28 days. The water/cement ratio is a constant 0.35. According to the research findings, blending glass powder and coal bottom ash in the production of mortar results in a significant improvement in performance, particularly in terms compressive and flexural strength (3.4–20.8%) (1.7–20.3%), while employing a 10% WGP and 10% CBA binary blend provides a large increase in the flexural strength (10.6%). In the fire resistance test, 15% WGP and 5% CBA has the maximum bond strength at 200 °C (2.6%). In SEM pictures of WGP and CBA, it is found that the two materials have a low porosity compared to the control cement mortar. Furthermore, the study finds that 10% glass powder and 10% coal bottom ash combined with cement paste is the best percentage of waste by-products to use in the creation of high-performance mortar. This ratio was discovered to be the most successful in terms of increasing mechanical, rheological, and durability qualities.

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • glass
  • glass
  • strength
  • cement
  • flexural strength
  • porosity
  • durability